
A framework for mapping and redistribution of
multidimensional distributed arrays

Edgar Solomonik

Department of EECS, UC Berkeley

Dec 5, 2013

1 / 24 Edgar Solomonik Cyclops Tensor Framework 1/ 24

Outline

1 Introduction: arrays, tensors, and graphs
Arrays are tensors
Graphs are matrices
Tensors are hypergraphs

2 Mapping a distributed array
Why?
How does CTF do it?

3 Migrating distributed array data
Why?
How does CTF do it?

4 Performance

5 Conclusions and future work

2 / 24 Edgar Solomonik Cyclops Tensor Framework 2/ 24

Introduction: arrays, tensors, and graphs Arrays are tensors

Arrays as tensors

An array is a data-storage format for a tensor

zero-dimensional tensors are scalars (zero-dimensional arrays)

1D tensors are vectors (regular arrays)

2D tensors are matrices (2D arrays, two nested pointers in C++)

generally a tensor can be stored in an array of the same dimension

Tensors can also be linearized in memory and stored in a 1D (linear) array

since memory is linear only one dimension of an array may be
accessed at a given time without unit stride

we can call the stride ordering of the tensor dimensions the
embedding or mapping of the tensor in memory

3 / 24 Edgar Solomonik Cyclops Tensor Framework 3/ 24

Introduction: arrays, tensors, and graphs Graphs are matrices

Graphs as matrices

A graph G = (V ,E) is a set of vertices V and edges E ⊂ V × V , for
example,

V = {v1, v2, v3, v4}
E = {(v1, v2), (v2, v4), (v1, v4), (v3, v4)}

Any graph may be represented as a matrix, we may represent the
connectivity of the undirected, unweighted graph G as a symmetric
adjacency matrix

0 1 0 1
1 0 0 1
0 0 0 1
1 1 1 0

The diagonal would be nonzero if the graph had loops, the non-zero
entries would be non-unit if the graph was weighted, and the matrix would
be non-symmetric if the graph was directed.

4 / 24 Edgar Solomonik Cyclops Tensor Framework 4/ 24

Introduction: arrays, tensors, and graphs Graphs are matrices

Graph operations as matrix operations

Case 1: particle-particle interactions G = (P,F)

the vertices P correspond to particles, which we can store in vector p

the edges F correspond to forces between particles, which we can
store in matrix F

we define � to compute the force between two particles, and ⊗ to
compute the effect of a force on a particle

F = p� p and pnew = F⊗ p

Fij = pi � pj and pnewi =
∑

j Fij ⊗ pj

5 / 24 Edgar Solomonik Cyclops Tensor Framework 5/ 24

Introduction: arrays, tensors, and graphs Graphs are matrices

Graph operations as matrix operations

Case 2: single source v0 shortest paths (Bellman-Ford) with adjacency
graph G = (V ,E)

we construct the distance graph G ′ = (D,E) starting with all di ∈ D,
set to di =∞ except for d1 = 0

we can store D in a vector d and E as a matrix E

Bellman-Ford computes for each j , dnew
i = min(di ,Eij + dj)

if we redefine � to be addition and
∑

to be min

dnew
i = min(di ,

∑
j Eij � dj)

iterate until convergence to get all paths (number of iterations
bounded by |V | if there are no cycles in G)

6 / 24 Edgar Solomonik Cyclops Tensor Framework 6/ 24

Introduction: arrays, tensors, and graphs Tensors are hypergraphs

Hypergraphs as tensors

A hypergraph H = (V ,E) is a set of vertices V and edges
E ⊂ V × V × V × In general, a hypergraph edge is a set of any
number of vertices. Lets consider a hypergraph where all edges have three
vertices,

V = {v1, v2, v3, v4}
E = {(v1, v2, v4), (v2, v3, v4), (v1, v3, v4)}

We can represent hypergraph H with a 3-dimensional tensor T with
entries Tijk ∈ T .

since the hypergraph is undirected the tensor is symmetric,
Tijk = Tkij = Tjki

the unique non-zero entries in T are T124, T234, and T134

7 / 24 Edgar Solomonik Cyclops Tensor Framework 7/ 24

Introduction: arrays, tensors, and graphs Tensors are hypergraphs

Coupled Cluster as a hypergraph computation

We can represent the Coupled Cluster method as a directed hypergraph
G = (K , L)

K = P ∪ O with P being a set of electrons and O being a set of
orbitals the electrons may occupy |O| ≥ |P|
the edges can be represented as two tensor sets L = F ∪ V where
F ∈ K × K are matrices (one-electron integrals) and
V ∈ K × K × K × K are 4D tensors (two-electron integrals)

we would like to compute the ’amplitudes’ T of dimension 2n
corresponding to the energy contributions of the excitation of n
particles to n orbitals

T is computed via Jacobi iteration (letting D be the diagonal of F),

T new = D−1
(

(F−D + V)(1 + T +
1

2
T 2 +

1

6
T 3 +

1

24
T 4)

)

8 / 24 Edgar Solomonik Cyclops Tensor Framework 8/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array Why?

Motivation for distributed array mapping

Data should drive the computation, the computation should not drive the
data!
In a distributed-memory setting, data should be decomposed so as
to minimize communication cost of the forthcoming algorithm

replicated? to what extent?

blocked or cyclic or block-cyclic? or ...?

which dimensions of the tensor/array to decompose?

what is the best order for the local stride of the dimensions of the
tensor/array?

how to preserve symmetry in the decomposition?

is it possible to align to the physical network topology?

answers to these questions depend on problem size, structure of the
data, network topology, memory capacity, and theoretical analysis
(performance models) of the forthcoming algorithm.

9 / 24 Edgar Solomonik Cyclops Tensor Framework 9/ 24

Mapping a distributed array How does CTF do it?

Physical network topology

Assume the network is a torus (mesh), which is a tensor of processors

e.g. BG/P network is 3D torus, BG/Q network is 5D torus (multiple
processes per node can be treated as a 6D torus)

if the network is not a torus, treat it as one anyway by factoring the
number of processes

still exploits locality, since not all processes talk to each other in a
torus physical topology

consider all foldings of the physical torus topology (all unique
embeddings of a 5D torus into a 4D torus, and so on to 1D)

10 / 24 Edgar Solomonik Cyclops Tensor Framework 10/ 24

Mapping a distributed array How does CTF do it?

Physical network topology

Assume the network is a torus (mesh), which is a tensor of processors

e.g. BG/P network is 3D torus, BG/Q network is 5D torus (multiple
processes per node can be treated as a 6D torus)

if the network is not a torus, treat it as one anyway by factoring the
number of processes

still exploits locality, since not all processes talk to each other in a
torus physical topology

consider all foldings of the physical torus topology (all unique
embeddings of a 5D torus into a 4D torus, and so on to 1D)

10 / 24 Edgar Solomonik Cyclops Tensor Framework 10/ 24

Mapping a distributed array How does CTF do it?

Physical network topology

Assume the network is a torus (mesh), which is a tensor of processors

e.g. BG/P network is 3D torus, BG/Q network is 5D torus (multiple
processes per node can be treated as a 6D torus)

if the network is not a torus, treat it as one anyway by factoring the
number of processes

still exploits locality, since not all processes talk to each other in a
torus physical topology

consider all foldings of the physical torus topology (all unique
embeddings of a 5D torus into a 4D torus, and so on to 1D)

10 / 24 Edgar Solomonik Cyclops Tensor Framework 10/ 24

Mapping a distributed array How does CTF do it?

Physical network topology

Assume the network is a torus (mesh), which is a tensor of processors

e.g. BG/P network is 3D torus, BG/Q network is 5D torus (multiple
processes per node can be treated as a 6D torus)

if the network is not a torus, treat it as one anyway by factoring the
number of processes

still exploits locality, since not all processes talk to each other in a
torus physical topology

consider all foldings of the physical torus topology (all unique
embeddings of a 5D torus into a 4D torus, and so on to 1D)

10 / 24 Edgar Solomonik Cyclops Tensor Framework 10/ 24

Mapping a distributed array How does CTF do it?

Virtual topology

Need a layer of abstraction between the domain decomposition and the
physical network!

map a tensor with edge lengths (n1, n2, . . .) tensor to a (p1, p2, . . .)
via a (v1, v2, . . .) virtual topology, such that

vi = 0 mod pi for (enforce load balance)
vi = vj if tensor dimensions i and j are symmetric (preserve symmetry)
typically want to maximize block size,

∏
i ni/vi

virtual processes may be seen as blocks and vice-versa in this context

motivated by the Charm++ programming model, albeit with SPMD
control-flow

11 / 24 Edgar Solomonik Cyclops Tensor Framework 11/ 24

Mapping a distributed array How does CTF do it?

Virtualization example

Matrix multiply on 2x3 processor grid. Red lines represent virtualized part
of processor grid. Elements assigned to blocks by cyclic phase.

X =

A
B

C

12 / 24 Edgar Solomonik Cyclops Tensor Framework 12/ 24

Mapping a distributed array How does CTF do it?

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model

13 / 24 Edgar Solomonik Cyclops Tensor Framework 13/ 24

Mapping a distributed array How does CTF do it?

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model

13 / 24 Edgar Solomonik Cyclops Tensor Framework 13/ 24

Mapping a distributed array How does CTF do it?

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model

13 / 24 Edgar Solomonik Cyclops Tensor Framework 13/ 24

Mapping a distributed array How does CTF do it?

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model

13 / 24 Edgar Solomonik Cyclops Tensor Framework 13/ 24

Mapping a distributed array How does CTF do it?

The mapping process

Do in parallel over all physical topologies (foldings of the original torus)

1 map longest physical torus dimension to longest tensor dimension and
repeat

2 select virtualization factors to preserve symmetry (as well as to match
the algorithmic requirements)

3 calculate the necessary memory usage and communication cost of the
algorithm

4 consider whether and what type of redistribution is necessary for the
mapping

5 select the best mapping based on a performance model

13 / 24 Edgar Solomonik Cyclops Tensor Framework 13/ 24

Mapping a distributed array How does CTF do it?

3D tensor mapping

14 / 24 Edgar Solomonik Cyclops Tensor Framework 14/ 24

Mapping a distributed array How does CTF do it?

3D tensor mapping

15 / 24 Edgar Solomonik Cyclops Tensor Framework 15/ 24

Mapping a distributed array How does CTF do it?

3D tensor mapping

16 / 24 Edgar Solomonik Cyclops Tensor Framework 16/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions

in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors

do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data Why?

Why do we need redistributions?

Numerical applications typically have multiple algorithmic stages and die
in the glue

in molecular dynamics, particle-particle interactions and force-particle
integration may require different mappings, further long-range force
calculations may require different layouts depending on the method

in Density Functional theory each iteration multiplies matrices, runs
an orthogonalization process, performs a symmetric eigensolve, and
does an FFT

each of these stages may want a different mapping of the matrix

in Coupled Cluster each iteration performs 40-1000 contractions
depending on the method

each contraction wants alignment among different tensor dimensions
in many cases it is preferable to replicate one or more of the tensors
do not want to keep tensors replicated, due to memory overhead

17 / 24 Edgar Solomonik Cyclops Tensor Framework 17/ 24

Migrating distributed array data How does CTF do it?

Sparse tensor reads and writes (closest CTF comes to a
PGAS model)

In CTF, tensors are defined on a communicator (subset or full set of
processors)

the data pointer is hidden from the user

the user can perform block-synchronous bulk writes and reads of
index-value pairs

to avoid communication, the user may read the current local pairs

it is possible to perform overlapped writes (accumulate)

CTF internal implementation (all parts threaded):
1 bin keys by processor and redistribute
2 bin key by virtual processor and then sort them
3 iterate over the dense tensor, reading or writing keys along the way
4 return keys to originating location if its a sparse read

18 / 24 Edgar Solomonik Cyclops Tensor Framework 18/ 24

Migrating distributed array data How does CTF do it?

Tensor slice and permuted slice

CTF makes it possible to extract sub-tensors of a distributed tensor, into a
new distributed tensor

slice() extracts all values corresponding a contiguous subset of indices
along each dimension

permute() extracts all values corresponding an arbitrary subset of
indices along each dimension

the target and destination tensors can live on different MPI
communicators (CTF Worlds)

CTF does not make it possible to create ’views’ and operate in-place
on sub-tensors

19 / 24 Edgar Solomonik Cyclops Tensor Framework 19/ 24

Migrating distributed array data How does CTF do it?

Tensor slice and permuted slice

CTF makes it possible to extract sub-tensors of a distributed tensor, into a
new distributed tensor

slice() extracts all values corresponding a contiguous subset of indices
along each dimension

permute() extracts all values corresponding an arbitrary subset of
indices along each dimension

the target and destination tensors can live on different MPI
communicators (CTF Worlds)

CTF does not make it possible to create ’views’ and operate in-place
on sub-tensors

19 / 24 Edgar Solomonik Cyclops Tensor Framework 19/ 24

Migrating distributed array data How does CTF do it?

Tensor slice and permuted slice

CTF makes it possible to extract sub-tensors of a distributed tensor, into a
new distributed tensor

slice() extracts all values corresponding a contiguous subset of indices
along each dimension

permute() extracts all values corresponding an arbitrary subset of
indices along each dimension

the target and destination tensors can live on different MPI
communicators (CTF Worlds)

CTF does not make it possible to create ’views’ and operate in-place
on sub-tensors

19 / 24 Edgar Solomonik Cyclops Tensor Framework 19/ 24

Migrating distributed array data How does CTF do it?

Tensor slice and permuted slice

CTF makes it possible to extract sub-tensors of a distributed tensor, into a
new distributed tensor

slice() extracts all values corresponding a contiguous subset of indices
along each dimension

permute() extracts all values corresponding an arbitrary subset of
indices along each dimension

the target and destination tensors can live on different MPI
communicators (CTF Worlds)

CTF does not make it possible to create ’views’ and operate in-place
on sub-tensors

19 / 24 Edgar Solomonik Cyclops Tensor Framework 19/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Redistribution amongst different mappings

CTF must migrate tensors between different mappings between operations
as well as for slice()

the key idea is to use the fact that the global ordering of the tensor
values is preserved to avoid formation of explicit key-value pairs

iterate over local sub-tensor in linear order and bin keys to determine
counts

iterate over local piece of old tensor in global order and place keys
into bins

MPI all-to-all-v

iterate over local piece of new tensor in global order and retrieve keys
from bins

kernel is threaded according to a global tensor partitioning

20 / 24 Edgar Solomonik Cyclops Tensor Framework 20/ 24

Migrating distributed array data How does CTF do it?

Distributed transposition of a tensor on a virtual processor
grid

In some cases, it is necessary to change the assignment of the tensor
dimensions to virtual grid dimensions without changing the virtual
processor grid itself

in this case, CTF does not touch data within each block

redistributed by block instead

use MPI Isend and MPI Irecv for each sent and received block

21 / 24 Edgar Solomonik Cyclops Tensor Framework 21/ 24

Migrating distributed array data How does CTF do it?

Local transposition

Once the data is redistributed into the new mapping, we reorder it locally
within blocks

turns all non-symmetric block contractions into matrix multiplication

’preserved’ symmetries may be folded into one dimension, but broken
ones cannot

maps dimensions which have symmetry that cannot be folded into
matrix multiplication to have the longest stride

the contraction execution logic becomes
1 nested distributed SUMMA (matrix multiplication)
2 nested call to iterate over virtual blocks
3 nested call to iterate over broken symmetric dimensions
4 nested call to DGEMM

claim: algorithms other than contractions may be efficiently expressed
in similar nested form

22 / 24 Edgar Solomonik Cyclops Tensor Framework 22/ 24

Performance

CTF Coupled Cluster performance

CTF CCSD (obtains amplitudes for two-electron excitations) is faster than
NWChem and scales to 8K nodes on BG/Q (see paper)
Much progress made this semester on CCSDT (three-electron excitations)

CCSDT requires 100s of contractions per iteration (more if there is
additional symmetric structure in the molecular system)

Many of these contractions are much smaller than others (tensors of
dimensions 2, 4, and 6 are contracted)

CTF achieves super-linear weak scaling and modest strong scaling

On 2048 nodes of BG/Q 29 Teraflop/s achieved for 8-water
molecules, 192 orbitals
Important direction forward is to parallelize across multiple small
contractions

1 CTF facilitates this by making inter-communicator tensor algebra
possible

2 the slice() call is also important here, especially when there is
block-structure in the Hamiltonian of the physical system

23 / 24 Edgar Solomonik Cyclops Tensor Framework 23/ 24

Conclusions and future work

Summary, conclusions, and future work

Cyclops Tensor Framework (CTF)

ctf.cs.berkeley.edu, BSD license, try it, use it

MPI+OpenMP+BLAS+nothing-else-necessary+keep-your-compiler-
its-just-a-library

Tested on gcc/intel/xlc, Mira/Carver/Hopper/Edison... even Apple

High performance algebra for your multidimensional symmetric arrays

In its essence, CTF is a library for mapping and communication
orchestration of data via mathematical user-level language (operators)

24 / 24 Edgar Solomonik Cyclops Tensor Framework 24/ 24

ctf.cs.berkeley.edu

Backup slides

25 / 24 Edgar Solomonik Cyclops Tensor Framework 25/ 24

	Introduction: arrays, tensors, and graphs
	Arrays are tensors
	Graphs are matrices
	Tensors are hypergraphs

	Mapping a distributed array
	Why?
	How does CTF do it?

	Migrating distributed array data
	Why?
	How does CTF do it?

	Performance
	Conclusions and future work
	Appendix

