Cyclops Tensor Framework

Edgar Solomonik

Department of EECS, Computer Science Division, UC Berkeley

March 17, 2014

A rank r tensor is r-dimensional representation of a dataset, for example,

- a rank one tensor is a vector (e.g. a set of nodes V)
- a rank two tensor is a matrix (e.g. a set of edges E in a graph $E \subset V \times V$)

Graphically, a rank r tensor is a set of all possible paths P of length r through vertices V

$$P \subset \underbrace{V \times \ldots \times V}_{r\text{-times}}$$

Alternatively, ${\cal P}$ may be thought of as a set of hypergraph edges with cardinality r

Programmatically, a rank r tensor is an r-dimensional array

Given rank 4 tensors $\boldsymbol{\mathsf{T}},\,\boldsymbol{\mathsf{V}},\,\text{and }\boldsymbol{\mathsf{W}}$ we may write perform tensor contraction as

$$W_{abij} = \sum_k \sum_l T_{abkl} \cdot V_{klij}$$

It is common to use raised and lowered index notation, which is sometimes related to the physical meaning of the indices,

$$W^{ab}_{ij} = \sum_{kl} T^{ab}_{kl} \cdot V^{kl}_{ij}$$

raised-indices are usually meant to be contracted with lowered indices.

Since a tensor is a representation of any data set, we may always switch representations

- define transformation δ^{p}_{ab} to transform a and b into compound index p ($\delta^{p}_{ab} = 1$ when $p = a + b \cdot n$ and 0 otherwise)
- graphically, folding corresponds to replacing edges with vertices ($W = V \times V$)

The contraction

$$W^{ab}_{ij} = \sum_{kl} T^{ab}_{kl} \cdot V^{kl}_{ij}$$

may be folded into matrix multiplication as follows

$$\delta^{p}_{ab} \cdot W^{ab}_{ij} \cdot \delta^{ij}_{q} = \sum_{r} \delta^{p}_{ab} \cdot T^{ab}_{kl} \cdot \delta^{kl}_{r} \cdot \delta^{r}_{kl} \cdot V^{kl}_{ij} \cdot \delta^{ij}_{q}$$
$$W^{p}_{q} = \sum_{r} T^{p}_{r} \cdot V^{r}_{q}$$

If all contractions can be folded into matrix multiplication, why use tensors of rank greater than two?

- permutational index symmetry: the tensors may express higher-dimensional structure
- expression of many different contractions with a single representation (each may require different folding)
- finding low-rank tensor decompositions, such as the CP (CANDECOMP/PARAFAC) decomposition

$$T_{ijk} \approx \sum_{r}^{R} v_{ir} \cdot w_{jr} \cdot z_{kr}$$

This talk will not address low-rank decompositions.

Application: Coupled Cluster

Coupled Cluster (CC) is a numerical approximation scheme to the time-independent many-body Schrödinger equation

$$|\Psi\rangle=e^{\textbf{T}_1+\textbf{T}_2+\textbf{T}_3+...}|\Phi_0\rangle$$

where T_k is a rank 2k 'ampltiude' tensor which correlates sets of k electrons over sets of k basis-functions (captures k-electron excitations)

- \bullet the CCSD method is a truncation at $\textbf{T}_1 + \textbf{T}_2$
- \bullet the CCSDT method also includes \textbf{T}_3

The CC methods produce a set of nonlinear equations for the amplitude tensors which are solved iteratively via tensor contractions

Given a system of *n* electrons, the methods require $O(n^{2k})$ memory and $O(n^{2k+2})$ operations

• provides primitives for distributed memory tensor contractions

- provides primitives for distributed memory tensor contractions
- takes advantage of thread (two-level) parallelism

- provides primitives for distributed memory tensor contractions
- takes advantage of thread (two-level) parallelism
- exposes a simple domain specific language for contractions

- provides primitives for distributed memory tensor contractions
- takes advantage of thread (two-level) parallelism
- exposes a simple domain specific language for contractions
- allows for efficient tensor redistribution and slicing

- provides primitives for distributed memory tensor contractions
- takes advantage of thread (two-level) parallelism
- exposes a simple domain specific language for contractions
- allows for efficient tensor redistribution and slicing
- exploits permutational tensor symmetry efficiently

- provides primitives for distributed memory tensor contractions
- takes advantage of thread (two-level) parallelism
- exposes a simple domain specific language for contractions
- allows for efficient tensor redistribution and slicing
- exploits permutational tensor symmetry efficiently
- uses only MPI, BLAS, and OpenMP and is a library

CTF relies on MPI (Message Passing Interface) for multiprocessor parallelism

- a set of processors in MPI corresponds to a communicator (MPI_Comm)
- MPI_COMM_WORLD is the default communicators containing all processes
- CTF_World dw(comm) defines an instance of CTF on any MPI communicator

where **T** is $m \times m \times n \times n$ antisymmetric in *ab* and in *ij*

• CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible
- the first dimension of the tensor is mapped linearly onto memory

- CTF_Tensor T(4,{m,m,n,n},{AS,NS,AS,NS},dw)
- an 'AS' dimension is antisymmetric with the next
- symmetric (SY) and symmetric-hollow (SH) are also possible
- the first dimension of the tensor is mapped linearly onto memory
- there are also obvious derived types for CTF_Tensor: CTF_Matrix, CTF_Vector, CTF_Scalar

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab, • Z[" abij"] += 2.0*F["ak"]*T["kbij"]

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

• P(a, b) is applied implicitly if **Z** is antisymmetric in ab

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

- Z[" abij"] += 2.0*F["ak"]*T["kbij"]
- P(a, b) is applied implicitly if **Z** is antisymmetric in ab
- Z, F, T should all be defined on the same world and all processes in the world must call the contraction bulk synchronously

$$Z^{ab}_{ij} = Z^{ab}_{ij} + 2 \cdot P(a,b) \sum_k F^a_k \cdot T^{kb}_{ij}$$

where P(a, b) implies antisymmetrization of index pair ab,

- Z[" abij"] += 2.0*F["ak"]*T["kbij"]
- P(a, b) is applied implicitly if **Z** is antisymmetric in ab
- Z, F, T should all be defined on the same world and all processes in the world must call the contraction bulk synchronously
- the beginning of the end of all for loops...

CTF takes away your data pointer

• Access arbitrary sparse subsets of the tensor by global index (coordinate format)

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k,l:m]

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices , double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices, double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices , double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings P, Q, does B[i, j] = A[P[i], Q[j]] via permute()

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices , double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings *P*, *Q*, does *B*[*i*, *j*] = *A*[*P*[*i*], *Q*[*j*]] via permute()
 - P and Q may access only subsets of A (if B is smaller)

- Access arbitrary sparse subsets of the tensor by global index (coordinate format)
 - T.write(int * indices, double * data) (also possible to scale)
 - T.read(int * indices , double * data) (also possible to scale)
- Matlab submatrix notation: A[j:k, l:m]
 - T. slice (int * offsets , int * ends) returns the subtensor
 - T. slice (int corner_off , int corner_end) does the same
 - can also sum a subtensor from one tensor with a subtensor of another tensor
 - different subworlds can read different subtensors simultaneously
- Extract a subtensor of any permutation of the tensor
 - given mappings P, Q, does B[i, j] = A[P[i], Q[j]] via permute()
 - P and Q may access only subsets of A (if B is smaller)
 - **B** may be defined on subworlds on the world on which **A** is defined and each subworld may specify different *P* and *Q*

Extracted from Aquarius (Devin Matthews' code)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"]; WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"]; FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afinn"]; WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Extract from CCSDT implemetnation

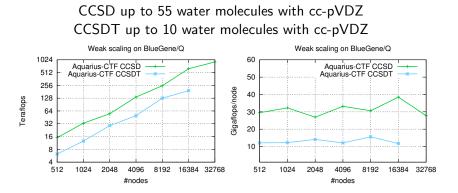
Extracted from Aquarius (Devin Matthews' code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

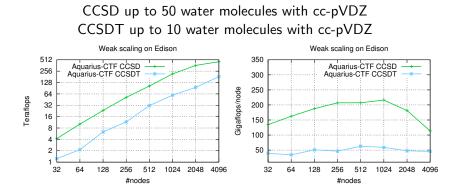
Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"]; Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"]; Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"]; Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"]; Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"]; Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"]; Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"]; Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"]; Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];

Coupled Cluster on IBM BlueGene/Q



Coupled Cluster on Cray XC30 Edison



NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derivation automatically done by Tensor Contraction Engine (TCE)

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

• NWChem 40 water molecules on 1024 nodes: 44 min

NWChem is a distributed-memory quantum chemistry method suite

- provides CCSD and CCSDT
- uses Global Arrays a Partitioned Global Address Space (PGAS) backend for tensor contractions
- derivation automatically done by Tensor Contraction Engine (TCE)

CCSD performance on Edison (thanks to Jeff Hammond for building NWChem and collecting data)

- NWChem 40 water molecules on 1024 nodes: 44 min
- CTF 40 water molecules on 1024 nodes: 9 min

A high-level description of NWChem's algorithm for tensor contractions:

- data layout is abstracted away by the Global Arrays framework
- Global Arrays uses one-sided communication for data movement
- packed tensors are stored in blocks
- for each contraction, each process does a subset of the block contractions
- each block is transposed and unpacked prior to contraction
- dynamic load balancing is employed among processors

CTF approach to contractions

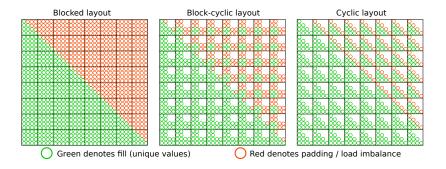
A high-level description of CTF's algorithm for tensor contractions:

- packed tensors are decomposed cyclically among toroidal processor grids
- MPI collectives are used for all communication
- for each contraction, a distributed layout is selected based on internal performance models
- performance model considers all possible execution paths
- before contraction, tensors are redistributed to a new layout
- if there is enough memory, the tensors are (partially) unpacked
- all preserved symmetries and non-symmetric indices are folded in preparation for matrix multiplication
- nested distributed matrix multiply algorithms are used to perform the contraction in a load-balanced manner

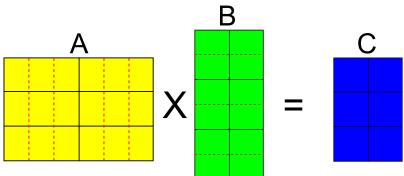
In CTF, tensors are defined on a communicator (subset or full set of processors)

- the data pointer is hidden from the user
- the user can perform block-synchronous bulk writes and reads of index-value pairs
- to avoid communication, the user may read the current local pairs
- it is possible to perform overlapped writes (accumulate)
- CTF internal implementation (all parts threaded):
 - bin keys by processor and redistribute
 - 2 bin key by virtual processor and then sort them
 - iterate over the dense tensor, reading or writing keys along the way
 - return keys to originating location if its a sparse read

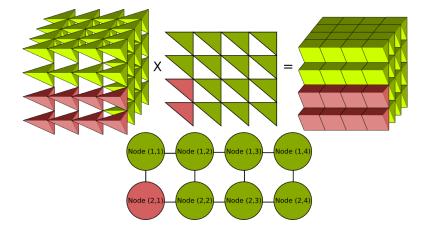
Blocked vs block-cyclic vs cyclic decompositions



Matrix multiply on 2x3 processor grid. Red lines represent virtualized part of processor grid. Elements assigned to blocks by cyclic phase.



3D tensor mapping



 map longest physical torus dimension to longest tensor dimension and repeat

- map longest physical torus dimension to longest tensor dimension and repeat
- select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)

- map longest physical torus dimension to longest tensor dimension and repeat
- select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
- calculate the necessary memory usage and communication cost of the algorithm

- map longest physical torus dimension to longest tensor dimension and repeat
- select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
- calculate the necessary memory usage and communication cost of the algorithm
- Consider whether and what type of redistribution is necessary for the mapping

- map longest physical torus dimension to longest tensor dimension and repeat
- select virtualization factors to preserve symmetry (as well as to match the algorithmic requirements)
- calculate the necessary memory usage and communication cost of the algorithm
- consider whether and what type of redistribution is necessary for the mapping
- **5** select the best mapping based on a performance model

CTF must migrate tensors between different mappings between operations as well as for slice()

• the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs

- the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs
- iterate over local sub-tensor in linear order and bin keys to determine counts

- the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs
- iterate over local sub-tensor in linear order and bin keys to determine counts
- iterate over local piece of old tensor in global order and place keys into bins

- the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs
- iterate over local sub-tensor in linear order and bin keys to determine counts
- iterate over local piece of old tensor in global order and place keys into bins
- MPI all-to-all-v

- the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs
- iterate over local sub-tensor in linear order and bin keys to determine counts
- iterate over local piece of old tensor in global order and place keys into bins
- MPI all-to-all-v
- iterate over local piece of new tensor in global order and retrieve keys from bins

- the key idea is to use the fact that the global ordering of the tensor values is preserved to avoid formation of explicit key-value pairs
- iterate over local sub-tensor in linear order and bin keys to determine counts
- iterate over local piece of old tensor in global order and place keys into bins
- MPI all-to-all-v
- iterate over local piece of new tensor in global order and retrieve keys from bins
- kernel is threaded according to a global tensor partitioning

In some cases, it is necessary to change the assignment of the tensor dimensions to virtual grid dimensions without changing the virtual processor grid itself

- in this case, CTF does not touch data within each block
- redistributed by block instead
- use MPI Isend and MPI Irecv for each sent and received block

Once the data is redistributed into the new mapping, we fold the tensors locally within blocks

- turns all non-symmetric block contractions into matrix multiplication
- 'preserved' symmetries may be folded into one dimension, but broken ones cannot
- maps dimensions which have symmetry that cannot be folded into matrix multiplication to have the longest stride

Once the tensors are distributed accordingly, the contraction algorithm begins

- replicate small tensors over some processor grid dimensions (2.5D/3D matrix multiplication algorithms)
- nested distributed SUMMA (2D matrix multiplication algorithm)
- **③** call to iterate over virtual blocks
- G call to iterate over broken symmetric dimensions
- call to DGEMM

• Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf

- Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf
- Latest version: v1.1 (March 2014), v1.0 was released in December 2013, development started in June 2011

- Cyclops Tensor Framework is available at ctf.cs.berkeley.edu and github.com/solomonik/ctf
- Latest version: v1.1 (March 2014), v1.0 was released in December 2013, development started in June 2011
- \bullet CCSD(T) and CCSDT(Q) methods in development

Collaborators:

- Devin Matthews, UT Austin (contributions to CTF, teaching me CC, and development of Aquarius on top of CTF)
- Jeff Hammond, Argonne National Laboratory (initiated project, provides continuing advice, and runs NWChem for me when my patience runs out)
- James Demmel and Kathy Yelick, UC Berkeley (advising) Grants:
 - Krell DOE Computational Science Graduate Fellowship