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Introduction

Motivation:

@ to exploit permutational symmetry present in tensors within
contractions that break the symmetry

@ coupled-cluster computations, which use 4th, 6th, and 8th order
partially-symmetric tensors
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Introduction

Motivation:

@ to exploit permutational symmetry present in tensors within
contractions that break the symmetry

@ coupled-cluster computations, which use 4th, 6th, and 8th order
partially-symmetric tensors

Sample coupled-cluster contractions
o CCSD: Z3> = P(a, b)P(i,j) - 3o W™ - Ty
° CCSDT: Z,;"fc = P(a, be)P(i,jK) Yo e WA - To

mjk
e CCSDTQ: ,j,f’fd P(a, bed)P(i, jkl) Y-, > Wam ;[J’,f,d
where P(...,...) denotes antisymmetrization of two index groups

ETH Ziirich June 18, 2014

Algorithms for contraction of tensors over a commutative ring



Overview of result

New algorithms that lower the number of multiplications but require more
additions

@ relevant not only for coupled-cluster, but even some BLAS routines

@ algorithms require that scalar operations are on a commutative ring
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Overview of result

New algorithms that lower the number of multiplications but require more
additions

@ relevant not only for coupled-cluster, but even some BLAS routines
@ algorithms require that scalar operations are on a commutative ring

Consider non-associative commutative ring ¢ with multiplication cost ,
and with addition cost v,

@ on the usual sum-product ring over reals: 1, = v,
@ on the sum-product ring over complex numbers: 1, = 3v,

@ on a Jordan (commutative) ring of matrices: p, > v,
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Outline

0 Introduction

e Symmetry in matrix computations
@ Matrix-vector multiplication
@ Symmetrized outer product
@ Symmetric matrices on the Jordan ring

© Symmetric tensor contractions
@ Arbitrary fully-symmetric contractions

@ Communication cost analysis
© Numerical error analysis
@ Nonsymmetric tensor contractions as a Jordan ring

@ Summary and conclusion
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Symmetric matrix times vector

@ Let b be a vector of length n with elements in o
@ Let A be an n-by-n symmetric matrix with elements in o

A,'j = AJ','
@ We multiply matrix A by b,
c=A-b

n
Ci = ZA;J' . bj
Jj=1

this corresponds to BLAS routine symv and has cost (ignoring
low-order terms here and later)

Toymv(0,n) = pip - n + Vo - n?

where 1, is the cost of multiplication and v, of addition
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Fast symmetric matrix times vector

We can perform symv using fewer element-wise multiplications,

C,:ZA,'J'-(b,'+bj)* ZA’-’ - b;
j=1 j=1

Ajj - (b + bj) is symmetric, and can be computed with (3)
element-wise multiplications

(Z}'zl A;j) - bj may be computed with n multiplications

@ The total cost of the new form is

1 5
7_s,ymv( ) Mo - 2” +VQ 2 2

This formulation is cheaper when p, > 3,

Form symm the formulation is cheaper when p, > v,
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Symmetric rank-2 update

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C=aob’=a-b" +b-a’
C,-j:a,--bj+aj-b,-.

@ For floating point arithmetic, this is the BLAS routine syr2
@ The routine may be computed from the nonsymmetric intermediate
Kij = aj - bj with the cost

Toy2(0,n) = iy - 0 + v, - 02
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Fast symmetric rank-2 update

We may compute the rank-2 update via a symmetric intermediate quantity

C,-j:(a,-+aj)-(b,-—l—bj)—a,--b,-—aj-bj.

@ We can compute the symmetric Z;j = (a; + a;) - (bi + b;) in (5)
multiplications

@ The total cost is then given to leading order by

1
Toy2(0:n) = pig - 5”2 + VoSN

° slyr2(Qa n) < Tsyr2(9a n) when o > 3I/g

e Tslyr2K(Qv n, K) < Tsyr2K(Qa n, K) when Ho > Vo

ETH Ziirich June 18, 2014 Algorithms for contraction of tensors over a commutative ring



Symmetric-matrix by symmetric-matrix multiplication

Given symmetric matrices A, B of dimension n on non-associative
commutative ring o, we seek to compute the anticommutator of A and B

C=AocB=A-B+B-A
n
CU:Z(Aik’Bjk+Ajk’Bik)-
k=1

3

The above equations requires n® multiplications and n® adds for a total

cost of

Tsyrmm(Q7 n) = Mo - n3 +vp- n3.

Note that o defines a non-associative commutative ring (the Jordan ring)
over the set of symmetric matrices.
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Fast symmetric-matrix by symmetric-matrix multiplication

We can combine the ideas from the fast routines for symv and syrk by
forming a fully-symmetric intermediate Z,

Zj = (Ay+ A+ Ai) - (B + B+ B)  Zy =y Z

Vij = Aj - <ZBU+Bik+Bjk> + Bjj - (ZAU+Aik+Ajk>
k k
VVi:ZAik'B/k
k

Cj=25—Vj—Wi—W,

The reformulation requires ('3’) multiplications to leading order,

Ts,yrmm(ga n) Mo - 6”3 TV zn,

which is faster than Tsyrmm When 1, > (4/5)v,.
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Tensor index notation

To generalize the fast symmetric algorithm, we introduce some convenient
notation for symmetric index sets (ordered tuples)

k(v) = (ki ko, .. . k).
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Tensor index notation

To generalize the fast symmetric algorithm, we introduce some convenient
notation for symmetric index sets (ordered tuples)

k(v) = (ki ko, .. . k).

We define an ordered union of tuples k(d + f) = i{d) U j(f) as
concatenate and sort, and the set of all possible pairs of d-and-f-tuples
whose ordered union is k(d + f) (disjoint partition of k(d + f)) as,

X7 (k(d +£)) = {(i{d),j(F)) | i{d) Uj(f) = k(d + ), Yi(d),j(F)}.
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Tensor index notation

To generalize the fast symmetric algorithm, we introduce some convenient
notation for symmetric index sets (ordered tuples)

k(v) = (ki ko, .. . k).

We define an ordered union of tuples k(d + f) = i(d) U j(f) as
concatenate and sort, and the set of all possible pairs of d-and-f-tuples
whose ordered union is k(d + f) (disjoint partition of k(d + f)) as,

X7 (k(d +£)) = {(i{d),j(F)) | i{d) Uj(f) = k(d + ), Yi(d),j(F)}.
Accordingly, we denote all possible ordered subsets as

X (k(d +f)) = {a]¥(a, b) € x{(k(d + f))}.

ETH Ziirich June 18, 2014 Algorithms for contraction of tensors over a commutative ring



Tensor index notation

To generalize the fast symmetric algorithm, we introduce some convenient
notation for symmetric index sets (ordered tuples)

k(v) = (ki ko, .. . k).

We define an ordered union of tuples k(d + f) = i(d) U j(f) as
concatenate and sort, and the set of all possible pairs of d-and-f-tuples
whose ordered union is k(d + f) (disjoint partition of k(d + f)) as,

X7 (k(d +£)) = {(i{d),j(F)) | i{d) Uj(f) = k(d + ), Yi(d),j(F)}.
Accordingly, we denote all possible ordered subsets as
X (k(d +f)) = {a]¥(a, b) € x{(k(d + f))}.

We omit the subscript and superscript on x when it is implicitly evident,
ie. (i(d),j(f)) € x(k{(d + 1)).
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Fully symmetric tensor contractions

For some s, t,v > 0, we seek to compute,
C=AoB

Citsyt) = Z ZAj(s>Uk(v) “Broyuiy |
sy, (e))ex(i(s+t)) \k(v)

where A, B, and C are all fully symmetric with dimensions n.
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Fully symmetric tensor contractions

For some s, t,v > 0, we seek to compute,
C=AoB

Citstt) = Z ZAj(s>Uk(v) “Broyuiy |
k{v)

Us):I())ex(i{s+1))

where A, B, and C are all fully symmetric with dimensions n. The
standard method forms the partially-symmetric intermediate C,

Cits).it) ZA yuk(v) * Breunge)

then symmetrizes C to get C, which is low-order, with a total cost of

Toetensi=n () ()(2) () () ()
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Fast fully-symmetric contraction algorithm

The fast algorithm for computing C forms the following key intermediate,
where w =s+t+v,

Zi<w>=< > Aj<s+v>>'< > Bl<t+v>>
J(s+v)ex(iw)) Ht+v)ex(i(w))

This intermediate costs (5) multiplications to compute. Two other
low-order intermediates need to be formed with cost (_";). The leading
order cost is dominated by forming Z and accumulating it to C,

Ptemso = (5 o () [(0)+ )+ O

ETH Ziirich June 18, 2014 Algorithms for contraction of tensors over a commutative ring



The fast algorithm for computing C forms the following intermediates with
(") multiplications (where w = s + t + v),

Z;<w>=< Z Aj<s+v>>'< Z B'<t+V>>

J{s+viex(iw)) I(t+v)ex(i{w))

Viw-1) =< Z Aj(s+V)> ' <Z Z B/<t+V>>

J{stviex(i{w=1)) ki I(ttv)ex(i(w—1)Uk(1))

+<Z > Aj<s+v>> : </ > B/<t+v>>

ki j{s+v)ex(i{lw—1)Uk(1)) (t+v)yex(i{w—1))

Witw-1) :( > Aj<s+v>) ' ( > B/<t+V>>
/

J{stviex(i{w=1)) (t+v)ex(i(w-1))

s+t ZZS—H Uk(v Z Vs—i—t)uk\/ 1)
- X (ZWHM )

J{s+t—=1)ex(i(s+t))
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Reduction in operation count of fast algorithm with

respect to standard

Reduction in operation count for different rings (T/T) Reduction in operation count for different rings (T/T’)
128 T T — T 128 T T —T T
—+— (s+t=w) Jordan ring : —+— (s+t+v=m) Jordan ring :
64 - —w— (s+t=w) complex ring B 64 - —w— (s+t+v=w) complex ring
32 | —*— (s+t=0 i ] 32 | (s+t+v: alring i
S | ! :
g et = 16
& 8r B ) P
ERS B 4
(5
= 2 F 2
1 19
05 i i i i 05 i i i i
1 2 3 4 5 6 1 2 3 4 5 6
® ®
(s, t,v) values for left and right graph tabulated below
w 1 2 3

Left graph | (1,0,0)
Right graph | (1,0,0)

(1,1,0) | (2,1,0) | (2,2,0) (3,3,0)
,0) | (1,1,0) | (1,1,1) | (2,1,1) (2,2,2)

ETH Ziirich June 18, 2014 Algorithms for contraction of tensors over a commutative ring



Communication cost of the standard algorithm

We consider communication bandwidth cost on a sequential machine with
cache size M.

The intermediate formed by the standard algorithm may be computed via
matrix multiplication with communication cost,

W(n,s,t,v,M):G)((sn)(n\/f)M(DJr <54’:v> + (tjv> + <Sit>>

The cost of symmetrizing the resulting intermediate is low-order or the
same.
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Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Holder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

wsem =G [()+ () ()]
() () (8)

which is not far from the lower bound and attains it when s =t = v.
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Reduction in communication (W/W’)

T I T
—— fast alg comm reduction forr s+t+v=w
| —— fast alg comm reduction for s+t=00 7

factor of reduction in communication volume
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Theoretical error bounds

We express error bounds in terms of v, = {7, where ¢ is the machine
precision.

Let W be the standard algorithm and @ be the fast algorithm. The error
bound for the standard algorithm arises from matrix multiplication

11 (W(A, B)) = Clloo < vm - [[Alloc - [|Blloc where m = () <w>

v

The following error bound holds for the fast algorithm

17(®(A,B)) — Clloe < 7m - [ Allo - [1Blloc where m = 3<C> (“’) (‘”)
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Numerical test |

Error in computation of (8 (A+eps"B)-(A+eps B)"AT)
‘

10 T T T
-6
10
-&
10
s
E_J =10
E 1m ¥ fast syrzki®, A+eps B) error [
g = syr2k(A,A+eps B error
E 1wk —#—fagl syrZkif,eps*E) eror
2
©
b =14
10 F
=16
10 F 1
-1&
10 | | | |
o 1 2 5 + 5
10 10 10 10 10 10

# of columns in random matrices & and B
We measure the error in computation of A- BT — B - AT where
B = A +¢-B for e = 1072 (antisymmetric rank-2K update).
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Numerical test Il

-2 Error of ﬂ*(ﬂ*S*‘eps*B)T-(H*S+EPS*B)*RT relative to EPS*H*ET-EPS*E*RT
T T

10
—4
10
-6
10
5
£
5 g
T100 [
g T fast syr2k(A,A*S+epsR) error
E & syr2k (A, A*Steps*B) errar
o 10710 L —*— fast_syr2k{A,eps*B) error
S
ey
=
& 12
10 r 4
-14
10 r 4
-16
10 L e L L i
1 2 3 4
10 10 10 10

# of colunns in random matrices A and B

Now we consider the computation of A - B” — B AT where
B=A-S+c-B where S is a random symmetric matrix.
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Typical definition of matrix ring

Matrices form an associative but noncommutative ring with multiplication

defined as
C:ABEZAII(BI(J:CU Vl,j
k

it is not commutative since

D:B'AEZBik'AkazAkj'Bik:Dij Vl',j
k k

on the other hand it is associative since

A-(B-C)EZA,'/- <ZB/k‘ ij> Vl',j
/ k
=) (ZA;,~B,k> - Cy Vi,j=(A-B)-C
k /
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A nonassociative commutative tensor ring

The existence of this ring can be deduced from the previously discussed
symmetric contractions
Recall our definition of symmetric contractions of tensors A, B, into C,

C=AoB= Cyoyr) = Z Z Ajsyuk(v) * Breouney |
((s) () ex(i(s+1)) \k(v)

the fast algorithm requires only that the operator - is commutative, which
o is, therefore the algorithm can be nested for symmetric A, B

C=AoB=Cyeppy = Z Z Ajs)uk(v) © Brinyuiey |
((s),I{))ex(i(s+t)) \k{v)

now, when s + v + t = 1, commutativity still holds, and the tensors (two
vectors and a scalar) are all nonsymmetric, therefore we can nest
nonsymmetric contractions by contracting "one index at a time".
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A nonassociative commutative tensor ring

We can also explicitly define a nonassociative commutative tensor ring for
tensors with dimensions n, and variable rank r, over a 'labeled’ tensor set,

S"={(r,Q,T):re{0,1,...},Q C{a,b,...},|Q| =r,
and 7 any rank r tensor }
we now define addition of A = (ra, Qa,V),B = (rg, Qg, W) € S" as
C=A®B=((rc,Qc, Z) where
rc = [QaU QB
Qc=QRQaU Qs
Zo, = Vo, +Wg, YQc e{l,...n} ¢, Qae{l,...n}"", Qg e {1,...n}'®

For example if A= (2,{i,j},V),B = (3,{i,j, k},W) € S", then
C=A®B=3,{ij.k}, Z) with

Zijk = Vij + Wig.
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A nonassociative commutative tensor ring

We then define multiplication on S according to the labels (in Einstein
notation), of for A = (ra, Qa, V), B = (rg, @, W) € S§" as
C=A0B=(rc,Qc, Z) where
rc = |QaU Q| — [QaN Qs
Qc = (QaUQp)\ (Qan @p)
Zoc = Z VaQa - Wa
QaNQs

For example if A= (2,{i,k},V),B = (2,{k,j},W) € S§", then
C=A0B=(21{ij}Z) with

Zj=> Vi W
k

Commutativity is evident but associativity is now lost e.g.,

(o) (2 o) (2 ) (o)
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Relation to Cyclops Tensor Framework

Our distributed memory tensor contraction library, " Cyclops Tensor
Framework” (CTF) behaves according to the definition of & and ® on S".
We employ Einstein notation to write C++ code for contractions like

Z["ij"] = V["ik"]*W["kj"];

where the sum over k is implicit. Symmetrization is also done implicitly
based on the symmetry of the output, so the CCSDT contraction from the
first slide is implemented in Aquarius as

Z["abcijk"]=W["amei"]*Z["ebcmjk"];

where sums over e and m are implicit as well as antisymmetirzations
P(a, bc), P(i, jk) if Z is defined to have two antisymmetric index groups

int lens[6] = {n,n,n,n,n,n};
int syms[6] {AS,AS,NS,AS,AS,NS};
CTF_Tensor Z = CTF_Tensor(6,lens,syms,mpicomm) ;
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Contraction s, t, v values for CCSD

Table where (s, t, v) are for the fast symmetric algorithm and [s', t/, V'] are
leftover indices (sometimes with unfolding):

AAxAA PPL: [2,2,2]
AB*AB PPL: [2,2,2]
AA*A,A RING: (1,0,1),(1,0,1),[0,2,0]
AA*A,B RING: (1,0,1),(1,0,1),[0,2,0]
AB*A,A RING: [2,2,2]
AB*A,B RING: [2,2,2]
AB*B,A RING: [2,2,2]
AB%*B,B RING: [2,2,2]

AA*AA INT: (1,0,1),(1,0,1),[0,2,0]
AA*AB INT: (1,0,1),(1,0,1),[0,2,0]
AB*AA INT: (0,1,1),(0,1,1),[2,0,0]
AB*AB INT: [2,2,2]

AB*BB INT: (0,1,1),(0,1,1),[2,0,0]
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Contraction s, t, v values for CCSD(T)

Table where (s, t, v) are for the fast symmetric algorithm and [s’, ¢/, V'] are
leftover indices (sometimes with unfolding):

AAxAA: 1,2,0),(2,1,0),[0,0,1]
AA*AB: (1,1,0),[2,2,1]
AB*AA: (1,1,0),[2,2,1]
AB*AB: (1,1,0),(1,1,0),[1,1,1]
AB*BA: (1,1,0),(1,1,0),[1,1,1]
AB*BB: (1,1,0),[2,2,1]
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Contraction s, t, v values for CCSDT

Table where (s, t, v) are for the fast symmetric algorithm and [s', t/, V'] are
leftover indices (sometimes with unfolding):

AAA*AA PPL: (1,0,2),[3,2,0]
AAB*AA PPL: [4,2,2]
AAB*AB PPL: (1,0,1),[3,2,1]

AAAXA,A RING: (2,0,1),(2,0,1),[0,2,0]
AAA%A,B RING: (2,0,1),(2,0,1),[0,2,0]
AAB*A,A RING: (1,0,1),(1,0,1),[2,2,0]
AAB*A,B RING: (1,0,1),(1,0,1),[2,2,0]
AAB*B,A RING: (2,1,0),(2,1,0),[0,0,2]
AAB*B,B RING: [4,2,2]
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Contraction s, t, v values for CCSDT(Q)

Table where (s, t, v) are for the fast symmetric algorithm and [s’, ¢/, V'] are
leftover indices (sometimes with unfolding):

AAA*AA:
AAA*AB:
AAB*AA:
AAB*AB:
AAB*BA:
AAB*BB:

(2,2,00,(3,1,0),[0,0,1]
(2,1,0),[3,2,1]
1,2,00,(2,1,0),[2,0,1]
1,1,0),(1,1,0),(1,1,0),[2,0,1]
(2,1,0),(2,1,0),[1,1,1]
(1,1,0),[4,2,1]
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Contraction s, t, v values for CCSDTQ

Table where (s, t, v) are for the fast symmetric algorithm and [s’, ¢/, V'] are
leftover indices (sometimes with unfolding):

AAAA*AA PPL: (2,0,2),[4,2,0]

AAAB*AA PPL: (1,0,2),[5,2,0]

AAAB*AB PPL: (2,0,1),[4,2,1]

AABB*AA PPL: [6,2,2]

AABB*AB PPL: (1,0,1),(1,0,1),[4,2,0]
AABB*BB PPL: [6,2,2]

AAAAxXA,A RING: (3,0,1),(3,0,1),[0,2,0]
AAAA*A,B RING: (3,0,1),(3,0,1),[0,2,0]
AAAB*A,A RING: (2,0,1),(2,0,1),[2,2,0]
AAAB*A,B RING: (2,0,1),(2,0,1),[2,2,0]
AAAB*B,A RING: (3,1,0),(3,1,0),[0,0,2]
AAAB*B,B RING: [6,2,2]

AABB*A,A RING: (1,0,1),(1,0,1),[4,2,0]
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Contraction s, t, v values for CCSDTQ contd

Table where (s, t, v) are for the fast symmetric algorithm and [s’, t/, V'] are
leftover indices (sometimes with unfolding):

AABB*A,B RING: (2,1,0),(2,1,0),[2,0,2]
AABB*B,A RING: (2,1,0),(2,1,0),[2,0,2]
AABB*B,B RING: (1,0,1),(1,0,1),[4,2,0]
AAAx%A,AA RING: (2,2,0),(2,2,0),[0,0,2]
AAA*A,AB RING: (2,0,1),(2,0,1),[0,4,0]
AAA%A,BB RING: (2,0,1),(2,0,1),[0,4,0]
AAB*A,AA RING: (1,2,0),(1,2,0),[2,0,2]
AAB*A,AB RING: (1,0,1),(1,0,1),[2,4,0]
AAB*A,BB RING: (1,2,0),(1,2,0),[2,0,2]
AAB*B,AA RING: (2,2,0),(2,2,0),[0,0,2]
AAB*B,AB RING: (2,1,0),(2,1,0),[0,2,2]
AAB*B,BB RING: [4,4,2]
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Summary of results

The following table lists the leading order number of multiplications F
required by the standard algorithm and F’ by the fast algorithm for various
cases of symmetric tensor contractions,

w s|t|v]|F F’ applications

2 1(1]0]n? n2/2 syr2, syr2k, her2, her2k

2 1/0[1]n? n?/2 | symv, symm, hemv, hemm

3 1[1]1]n n3/6 | Jordan and Lie matrix rings
s+t+v | s |t | v | (D)) | () | any symmetric tensor contraction

High-level conclusions:

@ The fast symmetric contraction algorithms provide interesting
potential arithmetic cost improvements for complex BLAS routines
and partially symmetric tensor contractions.

@ However, the new algorithms require more communication per flop,
incur more numerical error, and usually unable to exploit
fused-multiply-add units or blocked matrix multiplication primitives.
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Backup slides
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Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Holder-Brascamp-Lieb inequality.

~

W(n757 t,v, M) =Q min (w)

ma,mg,mc>0, . . 1
(Q;)'mA‘FIE(:)‘?me(f)'mCSM (mA mpg mC)Z

w w w
() mr () e () me))
t S v
An algorithm that blocks Z symmetrically nearly attains the cost
» o of BT (= (e
(n,s,t,v, M) O<m [(t + < + ,
+(C" )+ (" )+ (]
s+v t+v s+t))

which is not far from the lower bound and attains it when s =t = v.
ETH Ziirich

June 18, 2014

Algorithms for contraction of tensors over a commutative ring



	Introduction
	Symmetry in matrix computations
	Matrix-vector multiplication
	Symmetrized outer product
	Symmetric matrices on the Jordan ring

	Symmetric tensor contractions
	Arbitrary fully-symmetric contractions

	Communication cost analysis
	Numerical error analysis
	Nonsymmetric tensor contractions as a Jordan ring
	Summary and conclusion
	Appendix

