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Introduction

Motivation:

to exploit permutational symmetry present in tensors within
contractions that break the symmetry

coupled-cluster computations, which use 4th, 6th, and 8th order
partially-symmetric tensors

Sample coupled-cluster contractions

CCSD: Z ab
ij = P(a, b)P(i , j)

∑
m

∑
e W am

ei · T eb
mj

CCSDT: Z abc
ijk = P(a, bc)P(i , jk)

∑
m

∑
e W am

ei · T ebc
mjk

CCSDTQ: Z abcd
ijkl = P(a, bcd)P(i , jkl)

∑
m

∑
e W am

ei · T ebcd
mjkl

where P(. . . , . . .) denotes antisymmetrization of two index groups
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Overview of result

New algorithms that lower the number of multiplications but require more
additions

relevant not only for coupled-cluster, but even some BLAS routines

algorithms require that scalar operations are on a commutative ring

Consider non-associative commutative ring % with multiplication cost µ%
and with addition cost ν%

on the usual sum-product ring over reals: µ% = ν%

on the sum-product ring over complex numbers: µ% = 3ν%

on a Jordan (commutative) ring of matrices: µ% � ν%
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Symmetric matrix times vector

Let b be a vector of length n with elements in %

Let A be an n-by-n symmetric matrix with elements in %

Aij = Aji

We multiply matrix A by b,

c = A · b

ci =
n∑

j=1

Aij · bj

this corresponds to BLAS routine symv and has cost (ignoring
low-order terms here and later)

Tsymv(%, n) = µ% · n2 + ν% · n2

where µ% is the cost of multiplication and ν% of addition
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Fast symmetric matrix times vector

We can perform symv using fewer element-wise multiplications,

ci =
n∑

j=1

Aij · (bi + bj)−

 n∑
j=1

Aij

 · bi

Aij · (bi + bj) is symmetric, and can be computed with
(n
2

)
element-wise multiplications(∑n

j=1 Aij

)
· bi may be computed with n multiplications

The total cost of the new form is

T ′symv(%, n) = µ% ·
1

2
n2 + ν% ·

5

2
n2

This formulation is cheaper when µ% > 3ν%

Form symm the formulation is cheaper when µ% > ν%
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Symmetric rank-2 update

Consider a rank-2 outer product of vectors a and b of length n into
symmetric matrix C

C = a ◦ bT ≡ a · bT + b · aT

Cij = ai · bj + aj · bi .

For floating point arithmetic, this is the BLAS routine syr2

The routine may be computed from the nonsymmetric intermediate
Kij = ai · bj with the cost

Tsyr2(%, n) = µ% · n2 + ν% · n2.
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Fast symmetric rank-2 update

We may compute the rank-2 update via a symmetric intermediate quantity

Cij = (ai + aj) · (bi + bj)− ai · bi − aj · bj .

We can compute the symmetric Zij = (ai + aj) · (bi + bj) in
(n
2

)
multiplications

The total cost is then given to leading order by

T ′syr2(%, n) = µ% ·
1

2
n2 + ν% ·

5

2
n2.

T ′syr2(%, n) < Tsyr2(%, n) when µ% > 3ν%

T ′syr2K(%, n,K ) < Tsyr2K(%, n,K ) when µ% > ν%
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Symmetric-matrix by symmetric-matrix multiplication

Given symmetric matrices A,B of dimension n on non-associative
commutative ring %, we seek to compute the anticommutator of A and B

C = A ◦ B ≡ A · B + B · A

Cij =
n∑

k=1

(Aik · Bjk + Ajk · Bik) .

The above equations requires n3 multiplications and n3 adds for a total
cost of

Tsyrmm(%, n) = µ% · n3 + ν% · n3.

Note that ◦ defines a non-associative commutative ring (the Jordan ring)
over the set of symmetric matrices.
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Fast symmetric-matrix by symmetric-matrix multiplication

We can combine the ideas from the fast routines for symv and syrk by
forming a fully-symmetric intermediate Z,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) Z̄ij =
∑
k

Zijk

Vij = Aij ·
(∑

k

Bij + Bik + Bjk

)
+ Bij ·

(∑
k

Aij + Aik + Ajk

)
Wi =

∑
k

Aik · Bik

Cij = Z̄ij − Vij −Wi −Wj

The reformulation requires
(n
3

)
multiplications to leading order,

T ′syrmm(%, n) = µ% ·
1

6
n3 + ν% ·

5

3
n3,

which is faster than Tsyrmm when µ% > (4/5)ν%.
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Tensor index notation

To generalize the fast symmetric algorithm, we introduce some convenient
notation for symmetric index sets (ordered tuples)

k〈v〉 = (k1, k2, . . . kv ).

We define an ordered union of tuples k〈d + f 〉 = i〈d〉 ∪ j〈f 〉 as
concatenate and sort, and the set of all possible pairs of d-and-f -tuples
whose ordered union is k〈d + f 〉 (disjoint partition of k〈d + f 〉) as,

χd
f (k〈d + f 〉) = {(i〈d〉, j〈f 〉) | i〈d〉 ∪ j〈f 〉 = k〈d + f 〉,∀i〈d〉, j〈f 〉}.

Accordingly, we denote all possible ordered subsets as

χd(k〈d + f 〉) = {a|∀(a, b) ∈ χd
f (k〈d + f 〉)}.

We omit the subscript and superscript on χ when it is implicitly evident,
i.e. (i〈d〉, j〈f 〉) ∈ χ(k〈d + f 〉).
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Fully symmetric tensor contractions

For some s, t, v ≥ 0, we seek to compute,

C = A ◦ B

Ci〈s+t〉 =
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

∑
k〈v〉

Aj〈s〉∪k〈v〉 · Bk〈v〉∪l〈t〉

 ,

where A, B, and C are all fully symmetric with dimensions n.

The
standard method forms the partially-symmetric intermediate C̄,

C̄j〈s〉,l〈t〉 =
∑
k〈v〉

Aj〈s〉∪k〈v〉 · Bk〈v〉∪l〈t〉

then symmetrizes C̄ to get C, which is low-order, with a total cost of

T ′syctr(%, n, s, t, v) = µ% ·
(

n

s

)(
n

t

)(
n

v

)
+ ν% ·

(
n

s

)(
n

t

)(
n

v

)
.
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Fast fully-symmetric contraction algorithm

The fast algorithm for computing C forms the following key intermediate,
where ω = s + t + v ,

Zi〈ω〉 =

( ∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
( ∑

l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)

This intermediate costs
(n
ω

)
multiplications to compute. Two other

low-order intermediates need to be formed with cost
( n
ω−1
)
. The leading

order cost is dominated by forming Z and accumulating it to C,

T ′syctr(%, n, s, t, v) = µ% ·
(

n

ω

)
+ ν% ·

(
n

ω

)
·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]
.
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The fast algorithm for computing C forms the following intermediates with(n
ω

)
multiplications (where ω = s + t + v),

Zi〈ω〉 =

( ∑
j〈s+v〉∈χ(i〈ω〉)

Aj〈s+v〉

)
·
( ∑

l〈t+v〉∈χ(i〈ω〉)

Bl〈t+v〉

)

Vi〈ω−1〉 =

( ∑
j〈s+v〉∈χ(i〈ω−1〉)

Aj〈s+v〉

)
·
(∑

k1

∑
l〈t+v〉∈χ(i〈ω−1〉∪k〈1〉)

Bl〈t+v〉

)

+

(∑
k1

∑
j〈s+v〉∈χ(i〈ω−1〉∪k〈1〉)

Aj〈s+v〉

)
·
( ∑

l〈t+v〉∈χ(i〈ω−1〉)

Bl〈t+v〉

)

Wi〈ω−1〉 =

( ∑
j〈s+v〉∈χ(i〈ω−1〉)

Aj〈s+v〉

)
·
( ∑

l〈t+v〉∈χ(i〈ω−1〉)

Bl〈t+v〉

)
Ci〈s+t〉 =

∑
k〈v〉

Zi〈s+t〉∪k〈v〉 −
∑

k〈v−1〉

Vi〈s+t〉∪k〈v−1〉

−
∑

j〈s+t−1〉∈χ(i〈s+t〉)

(∑
k〈v〉

Wj〈s+t−1〉∪k〈v〉

)
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Reduction in operation count of fast algorithm with
respect to standard

 0.5
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Reduction in operation count for different rings (T/T’)

(s+t=ω) Jordan ring
(s+t=ω) complex ring
(s+t=ω) real ring

 0.5

 1
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 4
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 16

 32

 64

 128

1 2 3 4 5 6
ω

Reduction in operation count for different rings (T/T’)

(s+t+v=ω) Jordan ring
(s+t+v=ω) complex ring
(s+t+v=ω) real ring

(s, t, v) values for left and right graph tabulated below

ω 1 2 3 4 5 6
Left graph (1, 0, 0) (1, 1, 0) (2, 1, 0) (2, 2, 0) (3, 2, 0) (3, 3, 0)
Right graph (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 1, 1) (2, 2, 1) (2, 2, 2)

15 / 33 ETH Zürich June 18, 2014 Algorithms for contraction of tensors over a commutative ring 15/ 33



Communication cost of the standard algorithm

We consider communication bandwidth cost on a sequential machine with
cache size M.

The intermediate formed by the standard algorithm may be computed via
matrix multiplication with communication cost,

W (n, s, t, v ,M) = Θ

((n
s

)(n
t

)(n
v

)
√

M
+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

The cost of symmetrizing the resulting intermediate is low-order or the
same.
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Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Hölder-Brascamp-Lieb inequality.

An algorithm that blocks Z symmetrically nearly attains the cost

W ′(n, s, t, v ,M) = O

( (n
ω

)
√

M
·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]
+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

which is not far from the lower bound and attains it when s = t = v .
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Theoretical error bounds

We express error bounds in terms of γn = nε
1−nε , where ε is the machine

precision.

Let Ψ be the standard algorithm and Φ be the fast algorithm. The error
bound for the standard algorithm arises from matrix multiplication

||fl (Ψ(A,B))− C||∞ ≤ γm · ||A||∞ · ||B||∞ where m =

(
n

v

)(
ω

v

)
.

The following error bound holds for the fast algorithm

||fl (Φ(A,B))− C||∞ ≤ γm · ||A||∞ · ||B||∞ where m = 3

(
n

v

)(
ω

t

)(
ω

s

)
.
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Numerical test I

We measure the error in computation of A · BT − B · AT where
B = A + ε · B̄ for ε = 10−9 (antisymmetric rank-2K update).
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Numerical test II

Now we consider the computation of A · BT − B · AT where
B = A · S + ε · B̄ where S is a random symmetric matrix.
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Typical definition of matrix ring

Matrices form an associative but noncommutative ring with multiplication
defined as

C = A · B ≡
∑
k

Aik · Bkj = Cij ∀i , j

it is not commutative since

D = B · A ≡
∑
k

Bik · Akj =
∑
k

Akj · Bik = Dij ∀i , j

on the other hand it is associative since

A · (B · C) ≡
∑
l

Ail ·

(∑
k

Blk · Ckj

)
∀i , j

=
∑
k

(∑
l

Ail · Blk

)
· Ckj ∀i , j ≡ (A · B) · C
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A nonassociative commutative tensor ring

The existence of this ring can be deduced from the previously discussed
symmetric contractions
Recall our definition of symmetric contractions of tensors A, B, into C,

C = A ◦ B ≡ Ci〈s+t〉 =
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

∑
k〈v〉

Aj〈s〉∪k〈v〉 · Bk〈v〉∪l〈t〉

 ,

the fast algorithm requires only that the operator · is commutative, which
◦ is, therefore the algorithm can be nested for symmetric A, B

C = A ◦ B ≡ Ci〈s+t〉 =
∑

(j〈s〉,l〈t〉)∈χ(i〈s+t〉)

∑
k〈v〉

Aj〈s〉∪k〈v〉 ◦ Bk〈v〉∪l〈t〉

 ,

now, when s + v + t = 1, commutativity still holds, and the tensors (two
vectors and a scalar) are all nonsymmetric, therefore we can nest
nonsymmetric contractions by contracting ”one index at a time”.
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A nonassociative commutative tensor ring

We can also explicitly define a nonassociative commutative tensor ring for
tensors with dimensions n, and variable rank r , over a ’labeled’ tensor set,

Sn = {(r ,Q, T ) : r ∈ {0, 1, . . .},Q ⊂ {a, b, . . .}, |Q| = r ,

and T any rank r tensor }

we now define addition of A = (rA,QA,V),B = (rB ,QB ,W) ∈ Sn as

C = A⊕ B ≡ (rC ,QC ,Z) where

rC = |QA ∪ QB |
QC = QA ∪ QB

ZQC
= VQA

+ WQB
∀QC ∈ {1, . . . n}rC ,QA ∈ {1, . . . n}rA ,QB ∈ {1, . . . n}rB

For example if A = (2, {i , j},V),B = (3, {i , j , k},W) ∈ Sn, then
C = A⊕ B = (3, {i , j , k},Z) with

Zijk = Vij + Wijk .
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A nonassociative commutative tensor ring

We then define multiplication on Sn according to the labels (in Einstein
notation), of for A = (rA,QA,V),B = (rB ,QB ,W) ∈ Sn as

C = A� B ≡ (rC ,QC ,Z) where

rC = |QA ∪ QB | − |QA ∩ QB |
QC = (QA ∪ QB) \ (QA ∩ QB)

ZQC
=

∑
QA∩QB

VQA
·WQB

For example if A = (2, {i , k},V),B = (2, {k , j},W) ∈ Sn, then
C = A� B = (2, {i , j},Z) with

Zij =
∑
k

Vik ·Wkj .

Commutativity is evident but associativity is now lost e.g.,(∑
k

Aik

)
·

(∑
k

Blk · Ckj

)
6=

(∑
k

Aik · Blk

)
·

(∑
k

Ckj

)
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Relation to Cyclops Tensor Framework

Our distributed memory tensor contraction library, ”Cyclops Tensor
Framework” (CTF) behaves according to the definition of ⊕ and ⊗ on Sn.
We employ Einstein notation to write C++ code for contractions like

Z["ij"] = V["ik"]*W["kj"];

where the sum over k is implicit. Symmetrization is also done implicitly
based on the symmetry of the output, so the CCSDT contraction from the
first slide is implemented in Aquarius as

Z["abcijk"]=W["amei"]*Z["ebcmjk"];

where sums over e and m are implicit as well as antisymmetirzations
P(a, bc),P(i , jk) if Z is defined to have two antisymmetric index groups

int lens[6] = {n,n,n,n,n,n};

int syms[6] = {AS,AS,NS,AS,AS,NS};

CTF_Tensor Z = CTF_Tensor(6,lens,syms,mpicomm);
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Contraction s, t, v values for CCSD

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AA*AA PPL: [2,2,2]

AB*AB PPL: [2,2,2]

AA*A,A RING: (1,0,1),(1,0,1),[0,2,0]

AA*A,B RING: (1,0,1),(1,0,1),[0,2,0]

AB*A,A RING: [2,2,2]

AB*A,B RING: [2,2,2]

AB*B,A RING: [2,2,2]

AB*B,B RING: [2,2,2]

AA*AA INT: (1,0,1),(1,0,1),[0,2,0]

AA*AB INT: (1,0,1),(1,0,1),[0,2,0]

AB*AA INT: (0,1,1),(0,1,1),[2,0,0]

AB*AB INT: [2,2,2]

AB*BB INT: (0,1,1),(0,1,1),[2,0,0]
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Contraction s, t, v values for CCSD(T)

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AA*AA: (1,2,0),(2,1,0),[0,0,1]

AA*AB: (1,1,0),[2,2,1]

AB*AA: (1,1,0),[2,2,1]

AB*AB: (1,1,0),(1,1,0),[1,1,1]

AB*BA: (1,1,0),(1,1,0),[1,1,1]

AB*BB: (1,1,0),[2,2,1]
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Contraction s, t, v values for CCSDT

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AAA*AA PPL: (1,0,2),[3,2,0]

AAB*AA PPL: [4,2,2]

AAB*AB PPL: (1,0,1),[3,2,1]

AAA*A,A RING: (2,0,1),(2,0,1),[0,2,0]

AAA*A,B RING: (2,0,1),(2,0,1),[0,2,0]

AAB*A,A RING: (1,0,1),(1,0,1),[2,2,0]

AAB*A,B RING: (1,0,1),(1,0,1),[2,2,0]

AAB*B,A RING: (2,1,0),(2,1,0),[0,0,2]

AAB*B,B RING: [4,2,2]
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Contraction s, t, v values for CCSDT(Q)

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AAA*AA: (2,2,0),(3,1,0),[0,0,1]

AAA*AB: (2,1,0),[3,2,1]

AAB*AA: (1,2,0),(2,1,0),[2,0,1]

AAB*AB: (1,1,0),(1,1,0),(1,1,0),[2,0,1]

AAB*BA: (2,1,0),(2,1,0),[1,1,1]

AAB*BB: (1,1,0),[4,2,1]
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Contraction s, t, v values for CCSDTQ

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AAAA*AA PPL: (2,0,2),[4,2,0]

AAAB*AA PPL: (1,0,2),[5,2,0]

AAAB*AB PPL: (2,0,1),[4,2,1]

AABB*AA PPL: [6,2,2]

AABB*AB PPL: (1,0,1),(1,0,1),[4,2,0]

AABB*BB PPL: [6,2,2]

AAAA*A,A RING: (3,0,1),(3,0,1),[0,2,0]

AAAA*A,B RING: (3,0,1),(3,0,1),[0,2,0]

AAAB*A,A RING: (2,0,1),(2,0,1),[2,2,0]

AAAB*A,B RING: (2,0,1),(2,0,1),[2,2,0]

AAAB*B,A RING: (3,1,0),(3,1,0),[0,0,2]

AAAB*B,B RING: [6,2,2]

AABB*A,A RING: (1,0,1),(1,0,1),[4,2,0]

...
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Contraction s, t, v values for CCSDTQ contd

Table where (s, t, v) are for the fast symmetric algorithm and [s ′, t ′, v ′] are
leftover indices (sometimes with unfolding):

AABB*A,B RING: (2,1,0),(2,1,0),[2,0,2]

AABB*B,A RING: (2,1,0),(2,1,0),[2,0,2]

AABB*B,B RING: (1,0,1),(1,0,1),[4,2,0]

AAA*A,AA RING: (2,2,0),(2,2,0),[0,0,2]

AAA*A,AB RING: (2,0,1),(2,0,1),[0,4,0]

AAA*A,BB RING: (2,0,1),(2,0,1),[0,4,0]

AAB*A,AA RING: (1,2,0),(1,2,0),[2,0,2]

AAB*A,AB RING: (1,0,1),(1,0,1),[2,4,0]

AAB*A,BB RING: (1,2,0),(1,2,0),[2,0,2]

AAB*B,AA RING: (2,2,0),(2,2,0),[0,0,2]

AAB*B,AB RING: (2,1,0),(2,1,0),[0,2,2]

AAB*B,BB RING: [4,4,2]
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Summary of results

The following table lists the leading order number of multiplications F
required by the standard algorithm and F ′ by the fast algorithm for various
cases of symmetric tensor contractions,

ω s t v F F ′ applications

2 1 1 0 n2 n2/2 syr2, syr2k, her2, her2k

2 1 0 1 n2 n2/2 symv, symm, hemv, hemm

3 1 1 1 n3 n3/6 Jordan and Lie matrix rings

s+t+v s t v
(n
s

)(n
t

)(n
v

) (n
ω

)
any symmetric tensor contraction

High-level conclusions:

The fast symmetric contraction algorithms provide interesting
potential arithmetic cost improvements for complex BLAS routines
and partially symmetric tensor contractions.

However, the new algorithms require more communication per flop,
incur more numerical error, and usually unable to exploit
fused-multiply-add units or blocked matrix multiplication primitives.
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Backup slides
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Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the
Hölder-Brascamp-Lieb inequality.

Ŵ (n, s, t, v ,M) = Ω

(
min

mA,mB ,mC>0,

(ωt )·mA+(ωs )·mB+(ωv )·mC≤M

(n
ω

)
(mA ·mB ·mC )

1
2

·
((

ω

t

)
·mA +

(
ω

s

)
·mB +

(
ω

v

)
·mC

))
.

An algorithm that blocks Z symmetrically nearly attains the cost

W ′(n, s, t, v ,M) = O

( (n
ω

)
√

M
·
[(
ω

t

)
+

(
ω

s

)
+

(
ω

v

)]
+

(
n

s + v

)
+

(
n

t + v

)
+

(
n

s + t

))
.

which is not far from the lower bound and attains it when s = t = v .
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