#### Algorithms for contraction of tensors over a commutative ring

#### Edgar Solomonik<sup>1</sup>, Devin Matthews<sup>3</sup>, and James Demmel<sup>1,2</sup>

<sup>1</sup> Department of Electric Engineering and Computer Science, UC Berkeley <sup>2</sup> Department of Mathematics, UC Berkeley <sup>3</sup> Department of Chemistry, UT Austin

ETH Zürich

June 18, 2014

## Introduction

Motivation:

- to exploit permutational symmetry present in tensors within contractions that break the symmetry
- coupled-cluster computations, which use 4th, 6th, and 8th order partially-symmetric tensors

## Introduction

Motivation:

- to exploit permutational symmetry present in tensors within contractions that break the symmetry
- coupled-cluster computations, which use 4th, 6th, and 8th order partially-symmetric tensors

Sample coupled-cluster contractions

• CCSD: 
$$Z_{ij}^{ab} = P(a, b)P(i, j) \sum_{m} \sum_{e} W_{ei}^{am} \cdot T_{mj}^{eb}$$

• CCSDT: 
$$Z_{ijk}^{abc} = P(a, bc)P(i, jk) \sum_{m} \sum_{e} W_{ei}^{am} \cdot T_{mjk}^{ebc}$$

• CCSDTQ:  $Z_{ijkl}^{abcd} = P(a, bcd)P(i, jkl) \sum_{m} \sum_{e} W_{ei}^{am} \cdot T_{mjkl}^{ebcd}$ 

where  $P(\ldots,\ldots)$  denotes antisymmetrization of two index groups

## Overview of result

New algorithms that lower the number of multiplications but require more additions

- relevant not only for coupled-cluster, but even some BLAS routines
- algorithms require that scalar operations are on a commutative ring

New algorithms that lower the number of multiplications but require more additions

- relevant not only for coupled-cluster, but even some BLAS routines
- algorithms require that scalar operations are on a commutative ring Consider non-associative commutative ring  $\varrho$  with multiplication cost  $\mu_{\varrho}$  and with addition cost  $\nu_{\varrho}$ 
  - on the usual sum-product ring over reals:  $\mu_{\varrho} = \nu_{\varrho}$
  - ullet on the sum-product ring over complex numbers:  $\mu_{\varrho}=3\nu_{\varrho}$
  - on a Jordan (commutative) ring of matrices:  $\mu_{\varrho} \gg \nu_{\varrho}$

# Outline



#### Symmetry in matrix computations

- Matrix-vector multiplication
- Symmetrized outer product
- Symmetric matrices on the Jordan ring

#### 3 Symmetric tensor contractions

- Arbitrary fully-symmetric contractions
- 4 Communication cost analysis
- 5 Numerical error analysis
- 6 Nonsymmetric tensor contractions as a Jordan ring
- 7 Summary and conclusion

## Symmetric matrix times vector

- Let **b** be a vector of length *n* with elements in  $\rho$
- Let **A** be an *n*-by-*n* symmetric matrix with elements in  $\rho$

$$A_{ij} = A_{ji}$$

• We multiply matrix **A** by **b**,

$$\mathbf{c} = \mathbf{A} \cdot \mathbf{b}$$
  
 $c_i = \sum_{j=1}^n A_{ij} \cdot b_j$ 

this corresponds to BLAS routine symv and has cost (ignoring low-order terms here and later)

$$T_{\mathsf{symv}}(\varrho, n) = \mu_{\varrho} \cdot n^2 + \nu_{\varrho} \cdot n^2$$

where  $\mu_{\rho}$  is the cost of multiplication and  $\nu_{\rho}$  of addition

## Fast symmetric matrix times vector

We can perform symv using fewer element-wise multiplications,

$$c_i = \sum_{j=1}^n A_{ij} \cdot (b_i + b_j) - \left(\sum_{j=1}^n A_{ij}\right) \cdot b_i$$

- $A_{ij} \cdot (b_i + b_j)$  is symmetric, and can be computed with  $\binom{n}{2}$  element-wise multiplications
- $\left(\sum_{j=1}^{n} A_{ij}\right) \cdot b_i$  may be computed with *n* multiplications
- The total cost of the new form is

$$T'_{\mathsf{symv}}(\varrho, n) = \mu_{\varrho} \cdot \frac{1}{2}n^2 + \nu_{\varrho} \cdot \frac{5}{2}n^2$$

- This formulation is cheaper when  $\mu_{\varrho} > 3\nu_{\varrho}$
- $\bullet\,$  Form symm the formulation is cheaper when  $\mu_{\varrho}>\nu_{\varrho}$

Consider a rank-2 outer product of vectors  $\mathbf{a}$  and  $\mathbf{b}$  of length n into symmetric matrix  $\mathbf{C}$ 

$$\mathbf{C} = \mathbf{a} \circ \mathbf{b}^{T} \equiv \mathbf{a} \cdot \mathbf{b}^{T} + \mathbf{b} \cdot \mathbf{a}^{T}$$
$$C_{ij} = \mathbf{a}_{i} \cdot \mathbf{b}_{j} + \mathbf{a}_{j} \cdot \mathbf{b}_{i}.$$

- For floating point arithmetic, this is the BLAS routine syr2
- The routine may be computed from the nonsymmetric intermediate  $K_{ij} = a_i \cdot b_j$  with the cost

$$T_{\mathsf{syr2}}(\varrho, \mathbf{n}) = \mu_{\varrho} \cdot \mathbf{n}^2 + \nu_{\varrho} \cdot \mathbf{n}^2.$$

We may compute the rank-2 update via a symmetric intermediate quantity

$$C_{ij} = (a_i + a_j) \cdot (b_i + b_j) - a_i \cdot b_i - a_j \cdot b_j.$$

- We can compute the symmetric  $Z_{ij} = (a_i + a_j) \cdot (b_i + b_j)$  in  $\binom{n}{2}$  multiplications
- The total cost is then given to leading order by

$$T'_{\mathsf{syr2}}(arrho, \mathsf{n}) = \mu_arrho \cdot rac{1}{2} \mathsf{n}^2 + 
u_arrho \cdot rac{5}{2} \mathsf{n}^2$$

- $T'_{\mathsf{syr2}}(\varrho, n) < T_{\mathsf{syr2}}(\varrho, n)$  when  $\mu_{\varrho} > 3\nu_{\varrho}$
- $T'_{syr2K}(\varrho, n, K) < T_{syr2K}(\varrho, n, K)$  when  $\mu_{\varrho} > \nu_{\varrho}$

Given symmetric matrices  $\mathbf{A}$ ,  $\mathbf{B}$  of dimension *n* on non-associative commutative ring  $\rho$ , we seek to compute the *anticommutator* of  $\mathbf{A}$  and  $\mathbf{B}$ 

$$\mathbf{C} = \mathbf{A} \circ \mathbf{B} \equiv \mathbf{A} \cdot \mathbf{B} + \mathbf{B} \cdot \mathbf{A}$$
 $C_{ij} = \sum_{k=1}^{n} (A_{ik} \cdot B_{jk} + A_{jk} \cdot B_{ik})$ 

The above equations requires  $n^3$  multiplications and  $n^3$  adds for a total cost of

$$T_{\text{symm}}(\varrho, n) = \mu_{\varrho} \cdot n^3 + \nu_{\varrho} \cdot n^3.$$

Note that  $\circ$  defines a non-associative commutative ring (the Jordan ring) over the set of symmetric matrices.

## Fast symmetric-matrix by symmetric-matrix multiplication

We can combine the ideas from the fast routines for symv and syrk by forming a fully-symmetric intermediate  $\mathcal{Z}$ ,

$$Z_{ijk} = (A_{ij} + A_{ik} + A_{jk}) \cdot (B_{ij} + B_{ik} + B_{jk}) \qquad \overline{Z}_{ij} = \sum_{k} Z_{ijk}$$

$$V_{ij} = A_{ij} \cdot \left(\sum_{k} B_{ij} + B_{ik} + B_{jk}\right) + B_{ij} \cdot \left(\sum_{k} A_{ij} + A_{ik} + A_{jk}\right)$$

$$W_{i} = \sum_{k} A_{ik} \cdot B_{ik}$$

$$C_{ij} = \overline{Z}_{ij} - V_{ij} - W_{i} - W_{j}$$

The reformulation requires  $\binom{n}{3}$  multiplications to leading order,

$$T'_{\rm symm}(\varrho,n) = \mu_{\varrho} \cdot \frac{1}{6}n^3 + \nu_{\varrho} \cdot \frac{5}{3}n^3,$$

which is faster than  $T_{\text{syrmm}}$  when  $\mu_{\varrho} > (4/5)\nu_{\varrho}$ .

10 / 33

To generalize the fast symmetric algorithm, we introduce some convenient notation for symmetric index sets (ordered tuples)

$$k\langle v\rangle = (k_1, k_2, \ldots k_v).$$

To generalize the fast symmetric algorithm, we introduce some convenient notation for symmetric index sets (ordered tuples)

$$k\langle v\rangle = (k_1, k_2, \ldots k_v).$$

We define an ordered union of tuples  $k\langle d+f\rangle = i\langle d\rangle \cup j\langle f\rangle$  as concatenate and sort, and the set of all possible pairs of *d*-and-*f*-tuples whose ordered union is  $k\langle d+f\rangle$  (disjoint partition of  $k\langle d+f\rangle$ ) as,

$$\chi^{d}_{f}(k\langle d+f\rangle) = \{(i\langle d\rangle, j\langle f\rangle) \mid i\langle d\rangle \cup j\langle f\rangle = k\langle d+f\rangle, \forall i\langle d\rangle, j\langle f\rangle\}.$$

To generalize the fast symmetric algorithm, we introduce some convenient notation for symmetric index sets (ordered tuples)

$$k\langle v\rangle = (k_1, k_2, \ldots k_v).$$

We define an ordered union of tuples  $k\langle d+f\rangle = i\langle d\rangle \cup j\langle f\rangle$  as concatenate and sort, and the set of all possible pairs of *d*-and-*f*-tuples whose ordered union is  $k\langle d+f\rangle$  (disjoint partition of  $k\langle d+f\rangle$ ) as,

$$\chi_f^d(k\langle d+f\rangle) = \{(i\langle d\rangle, j\langle f\rangle) \mid i\langle d\rangle \cup j\langle f\rangle = k\langle d+f\rangle, \forall i\langle d\rangle, j\langle f\rangle\}.$$

Accordingly, we denote all possible ordered subsets as

$$\chi^d(k\langle d+f
angle)=\{a|orall(a,b)\in\chi^d_f(k\langle d+f
angle)\}.$$

To generalize the fast symmetric algorithm, we introduce some convenient notation for symmetric index sets (ordered tuples)

$$k\langle v\rangle = (k_1, k_2, \ldots k_v).$$

We define an ordered union of tuples  $k\langle d + f \rangle = i\langle d \rangle \cup j\langle f \rangle$  as concatenate and sort, and the set of all possible pairs of d-and-f-tuples whose ordered union is  $k\langle d + f \rangle$  (disjoint partition of  $k\langle d + f \rangle$ ) as,

$$\chi_f^d(k\langle d+f\rangle) = \{(i\langle d\rangle, j\langle f\rangle) \mid i\langle d\rangle \cup j\langle f\rangle = k\langle d+f\rangle, \forall i\langle d\rangle, j\langle f\rangle\}.$$

Accordingly, we denote all possible ordered subsets as

$$\chi^d(k\langle d+f\rangle)=\{a|orall(a,b)\in\chi^d_f(k\langle d+f
angle)\}.$$

We omit the subscript and superscript on  $\chi$  when it is implicitly evident, i.e.  $(i\langle d \rangle, j\langle f \rangle) \in \chi(k\langle d+f \rangle).$ 

## Fully symmetric tensor contractions

For some  $s, t, v \ge 0$ , we seek to compute,

12 / 33

$$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$$

$$C_{i\langle s+t\rangle} = \sum_{(j\langle s\rangle, l\langle t\rangle) \in \chi(i\langle s+t\rangle)} \left( \sum_{k\langle v\rangle} A_{j\langle s\rangle \cup k\langle v\rangle} \cdot B_{k\langle v\rangle \cup l\langle t\rangle} \right),$$

where  $\mathcal{A}$ ,  $\mathcal{B}$ , and  $\mathcal{C}$  are all fully symmetric with dimensions n.

#### Fully symmetric tensor contractions

For some  $s, t, v \ge 0$ , we seek to compute,

$$\mathcal{C} = \mathcal{A} \circ \mathcal{B}$$

$$C_{i\langle s+t\rangle} = \sum_{(j\langle s\rangle, l\langle t\rangle) \in \chi(i\langle s+t\rangle)} \left( \sum_{k\langle v\rangle} A_{j\langle s\rangle \cup k\langle v\rangle} \cdot B_{k\langle v\rangle \cup l\langle t\rangle} \right),$$

where A, B, and C are all fully symmetric with dimensions n. The standard method forms the partially-symmetric intermediate  $\overline{C}$ ,

$$ar{C}_{j\langle s
angle, l\langle t
angle} = \sum_{k\langle v
angle} {\cal A}_{j\langle s
angle\cup k\langle v
angle} \cdot {\cal B}_{k\langle v
angle\cup l\langle t
angle}$$

then symmetrizes  $\bar{\mathcal{C}}$  to get  $\mathcal{C}$ , which is low-order, with a total cost of

$$T'_{\text{syctr}}(\varrho, n, s, t, v) = \mu_{\varrho} \cdot \binom{n}{s} \binom{n}{t} \binom{n}{v} + \nu_{\varrho} \cdot \binom{n}{s} \binom{n}{t} \binom{n}{v}.$$

The fast algorithm for computing  ${\mathcal C}$  forms the following key intermediate, where  $\omega=s+t+v,$ 

$$Z_{i\langle\omega\rangle} = \left(\sum_{j\langle s+v\rangle\in\chi(i\langle\omega\rangle)} A_{j\langle s+v\rangle}\right) \cdot \left(\sum_{I\langle t+v\rangle\in\chi(i\langle\omega\rangle)} B_{I\langle t+v\rangle}\right)$$

This intermediate costs  $\binom{n}{\omega}$  multiplications to compute. Two other low-order intermediates need to be formed with cost  $\binom{n}{\omega-1}$ . The leading order cost is dominated by forming  $\mathcal{Z}$  and accumulating it to  $\mathcal{C}$ ,

$$T'_{\text{syctr}}(\varrho, n, s, t, v) = \mu_{\varrho} \cdot \binom{n}{\omega} + \nu_{\varrho} \cdot \binom{n}{\omega} \cdot \left[\binom{\omega}{t} + \binom{\omega}{s} + \binom{\omega}{v}\right].$$

The fast algorithm for computing C forms the following intermediates with  $\binom{n}{\omega}$  multiplications (where  $\omega = s + t + v$ ),

$$\begin{split} Z_{i\langle\omega\rangle} &= \left(\sum_{j\langle s+v\rangle\in\chi(i\langle\omega\rangle)} A_{j\langle s+v\rangle}\right) \cdot \left(\sum_{l\langle t+v\rangle\in\chi(i\langle\omega\rangle)} B_{l\langle t+v\rangle}\right) \\ V_{i\langle\omega-1\rangle} &= \left(\sum_{j\langle s+v\rangle\in\chi(i\langle\omega-1\rangle)} A_{j\langle s+v\rangle}\right) \cdot \left(\sum_{k_1} \sum_{l\langle t+v\rangle\in\chi(i\langle\omega-1\rangle\cup k\langle 1\rangle)} B_{l\langle t+v\rangle}\right) \\ &+ \left(\sum_{k_1} \sum_{j\langle s+v\rangle\in\chi(i\langle\omega-1\rangle\cup k\langle 1\rangle)} A_{j\langle s+v\rangle}\right) \cdot \left(\sum_{l\langle t+v\rangle\in\chi(i\langle\omega-1\rangle)} B_{l\langle t+v\rangle}\right) \\ W_{i\langle\omega-1\rangle} &= \left(\sum_{j\langle s+v\rangle\in\chi(i\langle\omega-1\rangle)} A_{j\langle s+v\rangle}\right) \cdot \left(\sum_{l\langle t+v\rangle\in\chi(i\langle\omega-1\rangle)} B_{l\langle t+v\rangle}\right) \\ C_{i\langle s+t\rangle} &= \sum_{k\langle v\rangle} Z_{i\langle s+t\rangle\cup k\langle v\rangle} - \sum_{k\langle v-1\rangle} V_{i\langle s+t\rangle\cup k\langle v-1\rangle} \\ &- \sum_{j\langle s+t-1\rangle\in\chi(i\langle s+t\rangle)} \left(\sum_{k\langle v\rangle} W_{j\langle s+t-1\rangle\cup k\langle v\rangle}\right) \end{split}$$

# Reduction in operation count of fast algorithm with respect to standard



(s, t, v) values for left and right graph tabulated below

| ω           | 1         | 2         | 3         | 4         | 5         | 6         |
|-------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Left graph  | (1, 0, 0) | (1, 1, 0) | (2, 1, 0) | (2, 2, 0) | (3, 2, 0) | (3, 3, 0) |
| Right graph | (1, 0, 0) | (1, 1, 0) | (1, 1, 1) | (2, 1, 1) | (2, 2, 1) | (2, 2, 2) |

We consider communication bandwidth cost on a sequential machine with cache size M.

The intermediate formed by the standard algorithm may be computed via matrix multiplication with communication cost,

$$W(n, s, t, v, M) = \Theta\left(\frac{\binom{n}{s}\binom{n}{t}\binom{n}{v}}{\sqrt{M}} + \binom{n}{s+v} + \binom{n}{t+v} + \binom{n}{s+t}\right)$$

The cost of symmetrizing the resulting intermediate is low-order or the same.

We can lower bound the cost of the fast algorithm using the Hölder-Brascamp-Lieb inequality.

An algorithm that blocks  ${\mathcal Z}$  symmetrically nearly attains the cost

$$W'(n, s, t, v, M) = O\left(\frac{\binom{n}{\omega}}{\sqrt{M}} \cdot \left[\binom{\omega}{t} + \binom{\omega}{s} + \binom{\omega}{v}\right] + \binom{n}{s+v} + \binom{n}{t+v} + \binom{n}{s+t}\right).$$

which is not far from the lower bound and attains it when s = t = v.



We express error bounds in terms of  $\gamma_n = \frac{n\epsilon}{1-n\epsilon}$ , where  $\epsilon$  is the machine precision.

Let  $\Psi$  be the standard algorithm and  $\Phi$  be the fast algorithm. The error bound for the standard algorithm arises from matrix multiplication

$$|fl(\Psi(\mathcal{A},\mathcal{B})) - \mathcal{C}||_{\infty} \leq \gamma_m \cdot ||\mathcal{A}||_{\infty} \cdot ||\mathcal{B}||_{\infty} \text{ where } m = \binom{n}{v} \binom{\omega}{v}.$$

The following error bound holds for the fast algorithm

$$||fl(\Phi(\mathcal{A},\mathcal{B})) - \mathcal{C}||_{\infty} \leq \gamma_m \cdot ||\mathcal{A}||_{\infty} \cdot ||\mathcal{B}||_{\infty} \text{ where } m = 3 \binom{n}{v} \binom{\omega}{t} \binom{\omega}{s}$$

## Numerical test I



## Numerical test II



 $\mathbf{B} = \mathbf{A} \cdot \mathbf{S} + \epsilon \cdot \mathbf{\bar{B}}$  where **S** is a random symmetric matrix.

# Typical definition of matrix ring

Matrices form an associative but noncommutative ring with multiplication defined as

$$\mathbf{C} = \mathbf{A} \cdot \mathbf{B} \equiv \sum_{k} A_{ik} \cdot B_{kj} = C_{ij} \quad \forall i, j$$

it is not commutative since

$$\mathbf{D} = \mathbf{B} \cdot \mathbf{A} \equiv \sum_{k} B_{ik} \cdot A_{kj} = \sum_{k} A_{kj} \cdot B_{ik} = D_{ij} \quad \forall i, j$$

on the other hand it is associative since

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) \equiv \sum_{l} A_{il} \cdot \left( \sum_{k} B_{lk} \cdot C_{kj} \right) \quad \forall i, j$$
$$= \sum_{k} \left( \sum_{l} A_{il} \cdot B_{lk} \right) \cdot C_{kj} \quad \forall i, j \equiv (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

#### A nonassociative commutative tensor ring

The existence of this ring can be deduced from the previously discussed symmetric contractions

Recall our definition of symmetric contractions of tensors  $\mathcal{A}, \mathcal{B}$ , into  $\mathcal{C}$ ,

$$\mathcal{C} = \mathcal{A} \circ \mathcal{B} \equiv C_{i\langle s+t \rangle} = \sum_{(j\langle s\rangle, l\langle t \rangle) \in \chi(i\langle s+t \rangle)} \left( \sum_{k \langle v \rangle} A_{j\langle s \rangle \cup k \langle v \rangle} \cdot B_{k \langle v \rangle \cup l \langle t \rangle} \right),$$

the fast algorithm requires only that the operator  $\cdot$  is commutative, which  $\circ$  is, therefore the algorithm can be nested for symmetric  $\mathcal{A}, \mathcal{B}$ 

$$\mathcal{C} = \mathcal{A} \circ \mathcal{B} \equiv C_{i\langle s+t \rangle} = \sum_{(j\langle s \rangle, I\langle t \rangle) \in \chi(i\langle s+t \rangle)} \left( \sum_{k \langle v \rangle} A_{j\langle s \rangle \cup k \langle v \rangle} \circ B_{k\langle v \rangle \cup I\langle t \rangle} \right),$$

now, when s + v + t = 1, commutativity still holds, and the tensors (two vectors and a scalar) are all nonsymmetric, therefore we can nest nonsymmetric contractions by contracting "one index at a time".

## A nonassociative commutative tensor ring

We can also explicitly define a nonassociative commutative tensor ring for tensors with dimensions n, and variable rank r, over a 'labeled' tensor set,

$$S^n = \{(r, Q, \mathcal{T}) : r \in \{0, 1, \ldots\}, Q \subset \{a, b, \ldots\}, |Q| = r,$$
  
and  $\mathcal{T}$  any rank  $r$  tensor  $\}$ 

we now define addition of  $A = (r_A, Q_A, \mathcal{V}), B = (r_B, Q_B, \mathcal{W}) \in S^n$  as

$$C = A \oplus B \equiv (r_C, Q_C, \mathcal{Z}) \text{ where}$$

$$r_C = |Q_A \cup Q_B|$$

$$Q_C = Q_A \cup Q_B$$

$$Z_{Q_C} = V_{Q_A} + W_{Q_B} \quad \forall Q_C \in \{1, \dots, n\}^{r_C}, Q_A \in \{1, \dots, n\}^{r_A}, Q_B \in \{1, \dots, n\}^{r_B}$$
For example if  $A = (2, \{i, j\}, \mathcal{V}), B = (3, \{i, j, k\}, \mathcal{W}) \in S^n$ , then
$$C = A \oplus B = (3, \{i, j, k\}, \mathcal{Z}) \text{ with}$$

$$Z_{ijk}=V_{ij}+W_{ijk}.$$

## A nonassociative commutative tensor ring

We then define multiplication on  $S^n$  according to the labels (in Einstein notation), of for  $A = (r_A, Q_A, \mathcal{V}), B = (r_B, Q_B, \mathcal{W}) \in S^n$  as

$$C = A \odot B \equiv (r_C, Q_C, Z)$$
 where  
 $r_C = |Q_A \cup Q_B| - |Q_A \cap Q_B|$   
 $Q_C = (Q_A \cup Q_B) \setminus (Q_A \cap Q_B)$   
 $Z_{Q_C} = \sum_{Q_A \cap Q_B} V_{Q_A} \cdot W_{Q_B}$ 

For example if  $A = (2, \{i, k\}, \mathbf{V}), B = (2, \{k, j\}, \mathbf{W}) \in S^n$ , then  $C = A \odot B = (2, \{i, j\}, \mathbf{Z})$  with

$$Z_{ij} = \sum_{k} V_{ik} \cdot W_{kj}.$$

Commutativity is evident but associativity is now lost e.g.,

June 18, 2014

$$\left(\sum_{k} A_{ik}\right) \cdot \left(\sum_{k} B_{lk} \cdot C_{kj}\right) \neq \left(\sum_{k} A_{ik} \cdot B_{lk}\right) \cdot \left(\sum_{k} C_{kj}\right)$$
  
ETH Zürich June 18, 2014 Algorithms for contraction of tensors over a commutative ring

25 / 33

ETH Zürich

## Relation to Cyclops Tensor Framework

Our distributed memory tensor contraction library, "Cyclops Tensor Framework" (CTF) behaves according to the definition of  $\oplus$  and  $\otimes$  on  $S^n$ . We employ Einstein notation to write C++ code for contractions like

Z["ij"] = V["ik"]\*W["kj"];

where the sum over k is implicit. Symmetrization is also done implicitly based on the symmetry of the output, so the CCSDT contraction from the first slide is implemented in Aquarius as

```
Z["abcijk"]=W["amei"]*Z["ebcmjk"];
```

where sums over e and m are implicit as well as antisymmetirzations P(a, bc), P(i, jk) if Z is defined to have two antisymmetric index groups

```
int lens[6] = {n,n,n,n,n};
int syms[6] = {AS,AS,NS,AS,AS,NS};
CTF_Tensor Z = CTF_Tensor(6,lens,syms,mpicomm);
```

## Contraction s, t, v values for CCSD

| AA*AA PPL:   | [2,2,2]                 |
|--------------|-------------------------|
| AB*AB PPL:   | [2,2,2]                 |
| AA*A,A RING: | (1,0,1),(1,0,1),[0,2,0] |
| AA*A,B RING: | (1,0,1),(1,0,1),[0,2,0] |
| AB*A,A RING: | [2,2,2]                 |
| AB*A,B RING: | [2,2,2]                 |
| AB*B,A RING: | [2,2,2]                 |
| AB*B,B RING: | [2,2,2]                 |
| AA*AA INT:   | (1,0,1),(1,0,1),[0,2,0] |
| AA*AB INT:   | (1,0,1),(1,0,1),[0,2,0] |
| AB*AA INT:   | (0,1,1),(0,1,1),[2,0,0] |
| AB*AB INT:   | [2,2,2]                 |
| AB*BB INT:   | (0,1,1),(0,1,1),[2,0,0] |
|              |                         |

| AA*AA: | (1,2,0),(2,1,0),[0,0,1] |
|--------|-------------------------|
| AA*AB: | (1,1,0), [2,2,1]        |
| AB*AA: | (1,1,0), [2,2,1]        |
| AB*AB: | (1,1,0),(1,1,0),[1,1,1] |
| AB*BA: | (1,1,0),(1,1,0),[1,1,1] |
| AB*BB: | (1,1,0), [2,2,1]        |

| AAA*AA PPL:   | (1,0,2),[3,2,0]         |
|---------------|-------------------------|
| AAB*AA PPL:   | [4,2,2]                 |
| AAB*AB PPL:   | (1,0,1),[3,2,1]         |
| AAA*A,A RING: | (2,0,1),(2,0,1),[0,2,0] |
| AAA*A,B RING: | (2,0,1),(2,0,1),[0,2,0] |
| AAB*A,A RING: | (1,0,1),(1,0,1),[2,2,0] |
| AAB*A,B RING: | (1,0,1),(1,0,1),[2,2,0] |
| AAB*B,A RING: | (2,1,0),(2,1,0),[0,0,2] |
| AAB*B,B RING: | [4,2,2]                 |

| AAA*AA: | (2,2,0),(3,1,0),[0,0,1]         |
|---------|---------------------------------|
| AAA*AB: | (2,1,0), [3,2,1]                |
| AAB*AA: | (1,2,0),(2,1,0),[2,0,1]         |
| AAB*AB: | (1,1,0),(1,1,0),(1,1,0),[2,0,1] |
| AAB*BA: | (2,1,0),(2,1,0),[1,1,1]         |
| AAB*BB: | (1,1,0),[4,2,1]                 |

# Contraction s, t, v values for CCSDTQ

| AAAA*AA PPL:   | (2,0,2),[4,2,0]         |
|----------------|-------------------------|
| AAAB*AA PPL:   | (1,0,2),[5,2,0]         |
| AAAB*AB PPL:   | (2,0,1),[4,2,1]         |
| AABB*AA PPL:   | [6,2,2]                 |
| AABB*AB PPL:   | (1,0,1),(1,0,1),[4,2,0] |
| AABB*BB PPL:   | [6,2,2]                 |
| AAAA*A,A RING: | (3,0,1),(3,0,1),[0,2,0] |
| AAAA*A,B RING: | (3,0,1),(3,0,1),[0,2,0] |
| AAAB*A,A RING: | (2,0,1),(2,0,1),[2,2,0] |
| AAAB*A,B RING: | (2,0,1),(2,0,1),[2,2,0] |
| AAAB*B,A RING: | (3,1,0),(3,1,0),[0,0,2] |
| AAAB*B,B RING: | [6,2,2]                 |
| AABB*A,A RING: | (1,0,1),(1,0,1),[4,2,0] |

## Contraction s, t, v values for CCSDTQ contd

| AABB*A,B  | RING: | (2,1,0),(2,1,0),[2,0,2] |
|-----------|-------|-------------------------|
| AABB*B,A  | RING: | (2,1,0),(2,1,0),[2,0,2] |
| AABB*B,B  | RING: | (1,0,1),(1,0,1),[4,2,0] |
| AAA*A,AA  | RING: | (2,2,0),(2,2,0),[0,0,2] |
| AAA*A,AB  | RING: | (2,0,1),(2,0,1),[0,4,0] |
| AAA*A,BB  | RING: | (2,0,1),(2,0,1),[0,4,0] |
| AAB*A, AA | RING: | (1,2,0),(1,2,0),[2,0,2] |
| AAB*A,AB  | RING: | (1,0,1),(1,0,1),[2,4,0] |
| AAB*A,BB  | RING: | (1,2,0),(1,2,0),[2,0,2] |
| AAB*B,AA  | RING: | (2,2,0),(2,2,0),[0,0,2] |
| AAB*B,AB  | RING: | (2,1,0),(2,1,0),[0,2,2] |
| AAB*B,BB  | RING: | [4,4,2]                 |
|           |       |                         |

# Summary of results

The following table lists the leading order number of multiplications F required by the standard algorithm and F' by the fast algorithm for various cases of symmetric tensor contractions,

| ω     | s | t | v | F                                      | <i>F'</i>           | applications                     |
|-------|---|---|---|----------------------------------------|---------------------|----------------------------------|
| 2     | 1 | 1 | 0 | $n^2$                                  | $n^{2}/2$           | syr2, syr2k, her2, her2k         |
| 2     | 1 | 0 | 1 | n <sup>2</sup>                         | $n^{2}/2$           | symv, symm, hemv, hemm           |
| 3     | 1 | 1 | 1 | n <sup>3</sup>                         | $n^{3}/6$           | Jordan and Lie matrix rings      |
| s+t+v | s | t | v | $\binom{n}{s}\binom{n}{t}\binom{n}{v}$ | $\binom{n}{\omega}$ | any symmetric tensor contraction |

High-level conclusions:

- The fast symmetric contraction algorithms provide interesting potential arithmetic cost improvements for complex BLAS routines and partially symmetric tensor contractions.
- However, the new algorithms require more communication per flop, incur more numerical error, and usually unable to exploit fused-multiply-add units or blocked matrix multiplication primitives.

34 / 33

#### Communication cost of the fast algorithm

We can lower bound the cost of the fast algorithm using the Hölder-Brascamp-Lieb inequality.

$$\hat{W}(n, s, t, v, M) = \Omega\left(\min_{\substack{m_A, m_B, m_C > 0, \\ \binom{\omega}{t} \cdot m_A + \binom{\omega}{s} \cdot m_B + \binom{\omega}{v} \cdot m_C \le M}} \frac{\binom{n}{\omega}}{(m_A \cdot m_B \cdot m_C)^{\frac{1}{2}}} \cdot \left(\binom{\omega}{t} \cdot m_A + \binom{\omega}{s} \cdot m_B + \binom{\omega}{v} \cdot m_C\right)\right).$$

An algorithm that blocks  $\mathcal{Z}$  symmetrically nearly attains the cost

$$W'(n, s, t, v, M) = O\left(\frac{\binom{n}{\omega}}{\sqrt{M}} \cdot \left[\binom{\omega}{t} + \binom{\omega}{s} + \binom{\omega}{v}\right] + \binom{n}{s+v} + \binom{n}{t+v} + \binom{n}{s+t}\right).$$

which is not far from the lower bound and attains it when s = t = v. ETH Zürich 35 / 33 June 18, 2014

Algorithms for contraction of tensors over a commutative ring