
Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Communication-Avoiding Parallel Algorithms for
Dense Linear Algebra and Tensor Computations

Edgar Solomonik

Department of EECS, UC Berkeley

February, 2013

Edgar Solomonik Communication-avoiding parallel algorithms 1/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Outline

1 Introduction
Why communication matters

2 Communication lower bounds
Latency lower bound

3 2.5D algorithms
LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

4 Electronic structure calculations
Coupled Cluster
CCSD implementation

5 Future directions

Edgar Solomonik Communication-avoiding parallel algorithms 2/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Why communication matters

Communication costs more than computation

Communication happens off-chip and on-chip and incurs two costs

latency - time per message

bandwidth - amount of data per unit time

These costs are becoming more expensive relative to flops

Table: Annual improvements

time per flop bandwidth latency

59% network 26% 15%

DRAM 23% 5%

Source: James Demmel [FOSC]

Edgar Solomonik Communication-avoiding parallel algorithms 3/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Why communication matters

Communication takes more energy than computation

Source: John Shalf (LBNL)
Edgar Solomonik Communication-avoiding parallel algorithms 4/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Model assumptions

A variant of a p-processor BSP communication model (BSPRAM)

Count bandwidth as the number of words moved between
global memory and local memory of some process along a
data-dependency path

Count latency as the number of synchronizations between
global memory and local memory

Assume inputs start in global memory

Assume computation is load-balanced and no values are
computed redundantly

Edgar Solomonik Communication-avoiding parallel algorithms 5/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

A lower bound on sequential communication volume

Definition

Let G = (V ,E) be any dependency graph corresponding to an
algorithm execution, where each edge represents a dependency. Let
I ⊂ V , be the set of initial inputs to G (vertices with in-degree
zero).

Conjecture (Neighborhood Theorem)

Let some process pi compute S ⊂ V − I , where
|S | = Θ(|(V − I)|/p) by load balance. Consider the neighborhood
N(S) of S, {v ∈ N(S) : (v ,w) ∈ E ∧ ((v ∈ V − S ∧w ∈ S)∨ (v ∈
S ∧ w ∈ V − S))}. The bandwidth cost incurred by pi is
W = Ω(|N(S)|).

Edgar Solomonik Communication-avoiding parallel algorithms 6/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Dependency bubble

Definition (Dependency bubble)

We consider the expansion of dependencies associated with a path
R = {v1, . . . vn}, where each vi , for i ∈ [2, n] has a dependency
path from vi−1. We define the dependency bubble around P as a
set of vertices in B(R) ⊂ V to be the set of vertices ui ∈ B(R)
which lay on a dependency path, {w , . . . ui . . . z} in G where
w , z ∈ R. This bubble corresponds to vertices which must be
computed between the computations of v1 and vn (the start and
end of the path).

Edgar Solomonik Communication-avoiding parallel algorithms 7/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Dependency bubbles

processor 1
processor 2
processor 3 Chain of bubbles

Edgar Solomonik Communication-avoiding parallel algorithms 8/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Latency lower bound based on bubble size

Conjecture (Bubble Neighborhood Theorem)

Consider a computation G which has a dependency path R, and
any consecutive subsequence R ⊂ P has a dependency bubble
B(R). Given a lower bound on the size of the bubble
|N(B(R))| = Ω(η(|R|)), where η(n) = nk for some k, for any
b ∈ [1, |P|], the following bandwidth W and latency cost S must
be incurred by some processor to compute G ,

S = Ω(|P|/b), W = Ω(η(b)).

Edgar Solomonik Communication-avoiding parallel algorithms 9/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Proof of Bubble Neighborhood Theorem

Sketch of Proof

Let the length of the longest consecutive subsequence of R
computed by a single processor be b. That process must
communicate the neighborhood around R, therefore

W = Ω(η(b)).

Further, there must be S = Ω(|P|/b) synchronizations in the
computation of R, since no chunk of size more than b is computed
sequentially.

Edgar Solomonik Communication-avoiding parallel algorithms 10/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Example: solution to system of linear equations

Consider solving for x where L is lower-triangular in

yi =
n∑
j≤i

lij · xj .

Define vertices corresponding to computations as vij = (lij , yi) in
addition to input vertices corresponding to elements of L and y .
We can use the concept of the dependency bubble to prove the
following conjecture

Conjecture (Latency-bandwidth Trade-off in TRSM)

The parallel computation of x = L\y where L is a lower-triangular
n-by-n matrix, must incur latency cost S and bandwidth cost W ,
such that

W · S2 = Ω(n2)

Edgar Solomonik Communication-avoiding parallel algorithms 11/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

TRSM latency lower bound

Sketch of Proof

We consider the dependency bubble formed along any dependency
path R = {vjj , . . . vkk}, which corresponds to the divide operations
which compute xj through xk . The dependency bubble B(R)
formed by this path includes vertices vac for {a, c ∈ [j , k], a ≥ c}.
Each vac has a unique neighbor of the input graph lac , therefore
the neighborhood growth around B(R), is lower bound by
|N(B(R))| = Ω(η(|R|) where

η(b) = Ω(b2)

By the Bubble Neighborhood Theorem we have S = Ω(n/b),
W = Ω(b2)

W · S2 = Ω(n2).

Edgar Solomonik Communication-avoiding parallel algorithms 12/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Dependency bubble expansion

Recall that a balanced vertex separator Q of a graph G = (V ,E),
splits V − Q = W1 + W2 so that min(|W1|, |W2|) ≥ 1

4 |V | and
E = W1 × (Q + W1) + W2 × (Q + W2).

Definition (Dependency bubble cross-section expansion)

If B(R) is the dependency bubble formed around path R, the
bubble cross-section expansion, E (R) is the minimum size of a
balanced vertex separator of B(R).

Edgar Solomonik Communication-avoiding parallel algorithms 13/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

General latency lower-bound based on bubble expansion

Conjecture (Bubble Expansion Theorem)

Let P be a dependency path in G , such that any subsequence
R ⊂ P, has bubble cross-section expansion E (R) = Ω(ε(|R|)) and
bubble size |B(R)| = Ω(σ(|R|)), where ε(b) = bd

1 ,and σ(b) = bd
2

for positive integers d1, d2 The bandwidth and latency costs of any
parallelization of G must obey the relations

F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b)

for all b ∈ [1, |P|].

Edgar Solomonik Communication-avoiding parallel algorithms 14/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Rough proof-idea and example

D1

D2

D3

D4

D5

D6

Dk

S - computed by p

Y - not computed by p

5 5

5 5

Edgar Solomonik Communication-avoiding parallel algorithms 15/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Proof of general latency lower bound

Definition

A parallelization corresponds to a coloring of the vertices, Let
V = ∪Vi be a disjoint union of sets Vi where process i computes
vertices Vi . Define Ri inductively as the smallest consecutive
subsequence of Ri = P − ∪i−1j=1Rj , so that

some process pi ∈ {1, . . . p} computes the first entry of Ri

process pi computes |Vpi ∩ B(Ri)| ≥ 1
4 |B(Ri)| elements and

does not compute |B(Ri)− Vpi | ≥ 1
2 |B(Ri)| elements

Due to load balance |
∑

i Rj | = Ω(|P|).

Edgar Solomonik Communication-avoiding parallel algorithms 16/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Dependency bubbles

processor 1
processor 2
processor 3 Chain of bubbles

Edgar Solomonik Communication-avoiding parallel algorithms 17/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Proof of general latency lower bound

Sketch of Proof

To compute each B(Ri) at least one synchronization is required.
Further, any communication schedule for Vpi ∩ B(Ri) must
correspond to a set Q of vertices (”communicated values”) which
separate Vpi ∩ B(Ri) from Vpi − B(Ri). Therefore, Q corresponds
to a balanced vertex separator on Bi ,

F = Ω

(∑
i

σ(|Ri |)

)
, W = Ω

(∑
i

ε(|Ri |)

)
.

These costs are minimized when each subsequence Ri is of the
same length b, therefore
F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b).

Edgar Solomonik Communication-avoiding parallel algorithms 18/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Example: LU factorization

We can use bubble expansion to prove better latency lower bounds
for LU, as well as Cholesky, and QR factorizations. LU factorization
of square matrices gives a cubic DAG vijk = (lik , ukj), where

aij =
∑

k≤min(i ,j)

lik · ukj .

Conjecture (Latency-bandwidth Trade-off in LU Factorization)

The parallel computation of lower-triangular L and upper-triangular
U such that A = LU where all matrices are n-by-n, must incur
flops cost F , latency cost S, and bandwidth cost W , such that

W · S = Ω(n2) and F · S2 = Ω(n3)

Edgar Solomonik Communication-avoiding parallel algorithms 19/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

LU latency lower bound

Sketch of Proof

We consider the dependency bubble B(R) formed around any path
R = {vjjj , . . . vkkk}, where each entry viii corresponds to the divide
operation used to compute lii . We see that |B(R)| = Ω(|R|)
vertices, for η(b) = b3, which are vacd for a, c, d ∈ [j , k]. Each
such bubble has a smallest separator size of E (R) = Ω(ε(|R|))
where ε(b) = b2. By application of the Bubble Expansion
Theorem, we then get that for any b

F = Ω(b2 · n), W = Ω(b · n), S = Ω(n/b)

therefore
W · S = Ω(n2) and F · S2 = Ω(n3)

Edgar Solomonik Communication-avoiding parallel algorithms 20/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Krylov subspace methods

Definition (Krylov subspace methods)

Compute Akx , where A typically corresponds to a sparse graph.

Conjecture

To compute Akx, where A corresponds to a 3d -point stencil, the
bandwidth W and latency S costs are lower-bounded by

F = Ω(k · bd), W = Ω(k · bd−1), S = Ω(k/b),

for any b. We can rewrite these relations as

W · Sd−1 = Ω(kd),

F · Sd = Ω(kd+1).

Edgar Solomonik Communication-avoiding parallel algorithms 21/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Latency lower bound

Latency lower bound for s-step methods

Sketch of Proof

For n-by-n A based on a d dimensional mesh, we consider the path
P = {xn/2, (Ax)n/2, . . . (Akx)n/2}. The bubble B(R) formed along
a subsequence of length |R| of this path is of size
|B(R)| = Ω(σ(|R|)), where σ(b) = bd+1 (it is all vertices within
b/2 hops in the mesh) and has bubble expansion
E (R) = Ω(ε(|R|)), where ε(b) = Ω(bd) (corresponding to a vertex
separator cut plane). Using the Bubble Expansion Theorem, we
attain,

F = Ω(k · bd), W = Ω(k · bd−1), S = Ω(k/b),

for any b.

Edgar Solomonik Communication-avoiding parallel algorithms 22/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Parallel matrix multiplication algorithms

Standard ’2D’ algorithms ([Cannon 69], [GW 97], [ABGJP 95]) assume
M = 3n2/p and block A, B, and C. on a

√
p-by-

√
p processor grid.

They have a cost of

W2D = O

(
n2

√
p

)
’3D’ algorithms ([Bernsten 89], [ACS 1990], [ABGJP 95], [MT 99])
assume M = 3n2/p2/3 and block the computation yielding on a
p1/3-by-p1/3-p1/3 processor grid, yielding

W3D = O

(
n2

p2/3

)
’2.5D’ algorithms ([MT 99], [SD 2011]) generalize this and, for any
c ∈ [1, p1/3] attain the lower bound with memory usage M = cn2/p,

W2.5D = O

(
n2

√
cp

)
Edgar Solomonik Communication-avoiding parallel algorithms 23/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

Edgar Solomonik Communication-avoiding parallel algorithms 24/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D algorithms on BG/Q

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

256 512 1024 2048 4096 8192 16384

Te
ra

flo
ps

#nodes

BG/Q matrix multiplication

Cyclops TF
Scalapack

Edgar Solomonik Communication-avoiding parallel algorithms 25/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Summary of theoretical results for 2.5D algorithms

A comparison between asymptotic communication cost in
ScaLAPACK (SCL) and in 2.5D algorithms (log(p) factors
suppressed). All matrices are n-by-n. For 2.5D algorithms,
c ∈ [1, p1/3]

problem lower bound 2.5D lat 2.5D bw SCL lat SCL bw

MM W = Ω(n2/p2/3)
√

p/c3 n2/
√

pc
√

p n2/
√

p

TRSM W · S2 = Ω(n2)
√

p/
√

c n2/
√

pc
√

p n2/
√

p
Cholesky W · S = Ω(n2)

√
pc n2/

√
pc

√
p n2/

√
p

LU W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p
QR W · S = Ω(n2)

√
pc n2/

√
pc n n2/

√
p

sym eig W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p

Edgar Solomonik Communication-avoiding parallel algorithms 26/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D LU with pivoting

A = P · L · U, where P is a permutation matrix

2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

pairwise pivoting does not produce an explicit L
pairwise pivoting may have stability issues for large matrices

Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

pass up rows of A instead of U to avoid error accumulation

Edgar Solomonik Communication-avoiding parallel algorithms 27/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

requires message/synchronization for each column

O(n) messages needed

Tournament pivoting is communication-optimal

performs a tournament to determine best pivot row candidates

passes up ’best rows’ of A

Edgar Solomonik Communication-avoiding parallel algorithms 28/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik Communication-avoiding parallel algorithms 29/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D QR factorization

The orthogonalization updates (I − 2yyT) do not commute so
aggregate them into (I − YTY)T .

To minimize latency perform recursive TSQR on the panel

Must reconstruct Householder Y from TSQR Q,R

Edgar Solomonik Communication-avoiding parallel algorithms 30/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Householder reconstruction

Yamamoto’s algorithm

Given A = QR for tall-skinny A,

perform LU on (Q1− I) to get LU([Q1− I ,Q2]) = Y · (TY T).

as stable as QR in practice

stability proof is almost complete

Edgar Solomonik Communication-avoiding parallel algorithms 31/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Symmetric eigensolve via QR

Need to apply two sided updates to reduce to tridiagonal T

T = (I − YTY T)A(I − YTTY T)

V = AYTT − 1

2
YTY TAYTT

T = A− YV T − VY T

In order to use TSQR to compute Y by panel must reduce to
banded form first.

Edgar Solomonik Communication-avoiding parallel algorithms 32/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D symmetric eigensolve

Algorithm outline

Compute TSQR on each subpanel Ai = Qi · Ri to reduce A to
band size n/

√
pc

Recover Yi from Qi and Ai via Yamamoto’s method

Accumulate Y = [Y1,Y2 . . .Yi] on processor layers and apply
in parallel to next panel Ai+1

Reduce from banded to tridiagonal using symmetric band
reduction with

√
pc processors

Use MRRR to compute eigenvalues of the tridiagonal matrix

Edgar Solomonik Communication-avoiding parallel algorithms 33/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Tensor contractions

We define a tensor contraction between A ∈ R⊗k , B ∈ R⊗l into
C ∈ R⊗m as

ci1i2...im =
∑

j1j2...jk+l−m

ai1i2...im−l j1j2...jk+l−m
· bj1j2...jk+l−mim−l+1im−l+2...im

Tensor contractions reduce to matrix multiplication via index
folding (let [ijk] denote a group of 3 indices folded into one),

c[i1i2...im−l],[im−l+1im−l+2...im] =∑
[j1j2...jk+l−m]

a[i1i2...im−l],[j1j2...jk+l−m] · b[j1j2...jk+l−m],[im−l+1im−l+2...im]

so here A, B, and C can be treated simply as matrices.

Edgar Solomonik Communication-avoiding parallel algorithms 34/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Tensor symmetry

Tensors can have symmetry e.g.

a(ij)k = a(ji)k or a(ij)k = −a(ji)k

I am introducing more dubious notation, by denoting symmetric
groups of indices as (ab...). We now might face contractions like

c(ij)kl =
∑
pqr

a(ij)(pq) · b(pqk)(rl)

where the computational graph G can be thought of as a 7D tensor
with entries g(ij)kl(pq)r = (c(ij)kl , a(ij)(pq), b(pqk)(rl)). There are two
things that can happen to symmetries during a contraction:

preserved, e.g. g(ij)kl(pq)r = g(ji)kl(pq)r
broken, e.g. b(pqk)(rl) = b(pqk)(lr) but g(ij)kl(pq)r 6= g(ij)kr(pq)l

Edgar Solomonik Communication-avoiding parallel algorithms 35/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Preserved symmetries in contractions

When a d-dimensional symmetry is preserved, a factor of d! can be
saved in memory and flops. This is simple to achieve, since the
d-dimensional index group can be folded into one index in a
packed layout, for instance

ckl = 2 ·
∑
[i<j]

ak[(i<j)] · b[(i<j)]l

Since we are folding the packed index, the iteration space of this
contraction is in effect equivalent to matrix multiplication, and
therefore easy to handle.

Edgar Solomonik Communication-avoiding parallel algorithms 36/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Broken symmetries in contractions

When a symmetry is broken, no flops can be saved with respect to
unpacking. However, memory can be saved as the tensors can
remain stored in packed format. Matrix multiplication of two
symmetric tensors features a broken symmetry, which can be
computed in packed layout as

ckl =
∑
i

a(k<i) ·b(i<l) + a(i<k) ·b(i<l) + a(k<i) ·b(l<i) + a(i<k) ·b(l<i)

This requires four matrix multiplications, but each accesses only
the lower triangle of the matrices, so only that portion need be
stored.
If data replication is correctly utilized in the parallel algorithm
unpacking and doing permutations of contractions have equivalent
bandwidth costs.

Edgar Solomonik Communication-avoiding parallel algorithms 37/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

data layout is abstracted away by the Global Arrays framework

Global Arrays uses one-sided communication for data
movement

packed tensors are stored in blocks

for each contraction, each process does a subset of the block
contractions

each block is transposed and unpacked prior to contraction

automatic load balancing is employed among processors

Edgar Solomonik Communication-avoiding parallel algorithms 38/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

tensor layout is cyclic and dynamically orchestrated

MPI collectives are used for all communication

packed tensors are decomposed cyclically among processors

for each contraction, a distributed layout is selected based on
internal performance models

before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for GEMM

nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner

Edgar Solomonik Communication-avoiding parallel algorithms 39/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

3D tensor mapping

Edgar Solomonik Communication-avoiding parallel algorithms 40/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

LU factorization
QR factorization and symmetric eigensolve
Tensor contractions

2.5D algorithms for tensors

We incorporate data replication for communication minimization
into CTF

Replicate only one tensor/matrix (minimize bandwidth but
not latency)

In parallel, autotune over mappings to all possible physical
topologies

Select mapping with least amount of communication that fits
in memory

Achieve minimal communication for tensors of widely different
sizes

Edgar Solomonik Communication-avoiding parallel algorithms 41/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Coupled Cluster definition

Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrödinger equation of the form

H|Ψ〉 = E |Ψ〉,

CC rewrites the wave-function |Ψ〉 as an excitation operator T̂
applied to the Slater determinant |Φ0〉

|Ψ〉 = eT̂|Φ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4

Edgar Solomonik Communication-avoiding parallel algorithms 42/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Coupled Cluster derivation

To derive CC equations, a normal-ordered Hamiltonian is defined
as the sum of one-particle and two-particle interaction terms

ĤN = F̂N + V̂N

Solving the CC energy contribution can be done by computing
eigenvectors of the similarity-transformed Hamiltonian

H̄ = e−T̂ĤNeT̂

Performing the CCSD truncation T̂ = T̂1 + T̂2 and applying the
Hadamard lemma of the Campbell-Baker-Hausdorff formula,

H̄ = ĤN + [ĤN , T̂1] + [ĤN , T̂2] +
1

2
[[ĤNT̂1], T̂1] . . .

which simplifies to

H̄ = ĤN + ĤNT̂1 + ĤNT̂2 + ĤNT̂2
1 + . . .

Edgar Solomonik Communication-avoiding parallel algorithms 43/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Coupled Cluster equations

Left projecting the eigenvector equation, we can obtain an explicit
formula for the CC energy via Wick contraction

ECCSD−E0 = 〈Φ0|H̄|Φ0〉 =
∑
ia

fiatai +
1

4

∑
abij

〈ij ||ab〉tabij +
1

2

∑
aibj

〈ij ||ab〉tai tbj

The tensor amplitude equations are derived in a similar fashion but
involve many more terms

0 = 〈Φa
i |H̄|Φ0〉 = fai −

∑
kc

fkctci tak + . . .

0 = 〈Φab
ij |H̄|Φ0〉 = 〈ab||ij〉+

∑
bj

〈ja||bi〉tbj + . . .

These equations then need to be factorized into two-tensor
contractions.

Edgar Solomonik Communication-avoiding parallel algorithms 44/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Actual CCSD code

Edgar Solomonik Communication-avoiding parallel algorithms 45/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.

Edgar Solomonik Communication-avoiding parallel algorithms 46/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Blue Gene/Q up to 1250 orbitals, 250 electrons

 100

 200

 300

 400

 500

 600

512 1024 2048 4096 8192

Te
ra

flo
ps

#nodes

CCSD weak scaling on Mira (BG/Q)

Cyclops TF

Edgar Solomonik Communication-avoiding parallel algorithms 47/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Coupled Cluster
CCSD implementation

Coupled Cluster efficiency on Blue Gene/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

512 1024 2048 4096 8192

Fr
ac

tio
n

of
 p

ea
k

flo
ps

#nodes

CCSD weak scaling on Mira (BG/Q)

Cyclops TF

Edgar Solomonik Communication-avoiding parallel algorithms 48/ 49

Introduction
Communication lower bounds

2.5D algorithms
Electronic structure calculations

Future directions

Summary and conclusion

Communication cost and load balance matter, especially in
parallel

We can lower bound bandwidth based on projections and
latency based on dependencies and graph expansion

2.5D algorithms present a communication-optimal algorithm
family for dense linear algebra

CTF is a parallel framework for symmetric tensor contractions

Coupled Cluster and Density Functional Theory are electronic
structure calculation methods implemented on top of CTF

Edgar Solomonik Communication-avoiding parallel algorithms 49/ 49

Density Functional Theory
Coupled Cluster formalism

Backup slides

Edgar Solomonik Communication-avoiding parallel algorithms 50/ 49

Density Functional Theory
Coupled Cluster formalism

Solutions to linear systems of equations

We want to solve some matrix equation

A · X = B

where A and B are known. Can solve by factorizing A = LU (L
lower triangular and U upper triangular) via Gaussian elimination,
then computing TRSMs

X = U−1L−1B

via triangular solves. If A is symmetric positive definite, we can use
Cholesky factorization. Cholesky and TRSM are no harder than
LU.

Edgar Solomonik Communication-avoiding parallel algorithms 51/ 49

Density Functional Theory
Coupled Cluster formalism

2D blocked LU factorization

A

Edgar Solomonik Communication-avoiding parallel algorithms 52/ 49

Density Functional Theory
Coupled Cluster formalism

2D blocked LU factorization

L₀₀

U₀₀

Edgar Solomonik Communication-avoiding parallel algorithms 53/ 49

Density Functional Theory
Coupled Cluster formalism

2D blocked LU factorization

L

U

Edgar Solomonik Communication-avoiding parallel algorithms 54/ 49

Density Functional Theory
Coupled Cluster formalism

2D blocked LU factorization

L

U

S=A-LU

Edgar Solomonik Communication-avoiding parallel algorithms 55/ 49

Density Functional Theory
Coupled Cluster formalism

2D block-cyclic decomposition

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

Edgar Solomonik Communication-avoiding parallel algorithms 56/ 49

Density Functional Theory
Coupled Cluster formalism

2D block-cyclic LU factorization

Edgar Solomonik Communication-avoiding parallel algorithms 57/ 49

Density Functional Theory
Coupled Cluster formalism

2D block-cyclic LU factorization

L

U

Edgar Solomonik Communication-avoiding parallel algorithms 58/ 49

Density Functional Theory
Coupled Cluster formalism

2D block-cyclic LU factorization

L

U

S=A-LU

Edgar Solomonik Communication-avoiding parallel algorithms 59/ 49

Density Functional Theory
Coupled Cluster formalism

3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]

Tiskin gives algorithm under the BSP model

Bulk Synchronous Parallel
considers communication and synchronization

We give an alternative distributed-memory adaptation and
implementation

Also, we have a new lower-bound for the latency cost

Edgar Solomonik Communication-avoiding parallel algorithms 60/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik Communication-avoiding parallel algorithms 61/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik Communication-avoiding parallel algorithms 62/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U

L

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik Communication-avoiding parallel algorithms 63/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU strong scaling (without pivoting)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

Edgar Solomonik Communication-avoiding parallel algorithms 64/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 65/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 66/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 67/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

L₃₀

L₁₀
L₂₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 68/ 49

Density Functional Theory
Coupled Cluster formalism

3D QR factorization

A = Q · R where Q is orthogonal R is upper-triangular

3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]

Tiskin minimizes latency and bandwidth by working on
slanted panels

3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates

Edgar Solomonik Communication-avoiding parallel algorithms 69/ 49

Density Functional Theory
Coupled Cluster formalism

3D QR factorization using the YT representation

The YT representation of Householder QR factorization is more
work efficient when computing only R

We give an algorithm that performs 2.5D QR using the YT
representation

The algorithm performs left-looking updates on Y

Householder with YT needs fewer computation (roughly 2x)
than Givens rotations

Edgar Solomonik Communication-avoiding parallel algorithms 70/ 49

Density Functional Theory
Coupled Cluster formalism

3D QR using YT representation

Edgar Solomonik Communication-avoiding parallel algorithms 71/ 49

Density Functional Theory
Coupled Cluster formalism

Latency-optimal 2.5D QR

To reduce latency, we can employ the TSQR algorithm

1 Given n-by-b panel partition into 2b-by-b blocks

2 Perform QR on each 2b-by-b block

3 Stack computed Rs into n/2-by-b panel and recursive

4 Q given in hierarchical representation

Need YT representation from hierarchical Q...

Edgar Solomonik Communication-avoiding parallel algorithms 72/ 49

Density Functional Theory
Coupled Cluster formalism

YT reconstruction

Yamamoto et al.

Take Y to be the first b columns of Q minus the identity

Define T = (I − Q1)−1

Sacrifices triangular structure of T and Y .

Our first attempt

LU(R−A) = LU(R−(I−YTY T)R) = LU(YTY TR) = (Y)·(TY TR)

was unstable due to being dependent on the condition number of
R. However, performing LU on Yamamoto’s T seems to be stable,

LU(I−Q1) = LU(I−(I−Y1TY T
1)) = LU(Y1TY T

1) = (Y1)·(TY T
1)

and should yield triangular Y and T .

Edgar Solomonik Communication-avoiding parallel algorithms 73/ 49

Density Functional Theory
Coupled Cluster formalism

Communication lower bound for tensor contractions

The computational graph corresponding to a tensor contraction
can be higher dimensional, but there are still only three projections
corresponding to A, B, and C. So, if the contraction necessitates
F floating point operations, the bandwidth lower bound is still just

Wp = Ω

(
F

p ·
√

M

)
.

Therefore. folding contractions into matrix multiplication and
running a good multiplication algorithm is communication-optimal.

Edgar Solomonik Communication-avoiding parallel algorithms 74/ 49

Density Functional Theory
Coupled Cluster formalism

Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

in a blocked distribution process pi owns
{vi ·n/p+1, . . . v(i+1)·n/p}
in a cyclic distribution process pi owns {vi , v2i , . . . v(n/p)i}

A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form ≤ and not <, so in effect, diagonals are stored for
skew-symmetric tensors.

Edgar Solomonik Communication-avoiding parallel algorithms 75/ 49

Density Functional Theory
Coupled Cluster formalism

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Edgar Solomonik Communication-avoiding parallel algorithms 76/ 49

Density Functional Theory
Coupled Cluster formalism

Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

1 if there is enough memory, unpack broken symmetries

2 perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

3 use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions

Edgar Solomonik Communication-avoiding parallel algorithms 77/ 49

Density Functional Theory
Coupled Cluster formalism

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

a base grid, obtained from the physical topology or from
factorizing the number of processors

folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

mapping an index shared by two tensors in the contraction to
different processor grid dimensions

running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

replicating data along some processor dimensions ’a la 2.5D’

Edgar Solomonik Communication-avoiding parallel algorithms 78/ 49

Density Functional Theory
Coupled Cluster formalism

Density Function Theory (DFT)

DFT uses the fact that the ground-state wave-function Ψ0 is a
unique functional of the particle density n(~r)

Ψ0 = Ψ[n0]

Since Ĥ = T̂ + V̂ + Û, where T̂ , V̂ , and Û, are the kinetic,
potential, and interaction contributions respectively,

E [n0] = 〈Ψ[n0]|T̂ [n0] + V̂ [n0] + Û[n0]|Ψ[n0]〉
DFT assumes Û = 0, and solves the Kohn-Sham equations[

− ~2

2m
∇2 + Vs(~r)

]
φi (~r) = εiφi (~r)

where Vs has a exchange-correlation potential correction,

Vs(~r) = V (~r) +

∫
e2ns(~r ′)

|~r − ~r ′|
d3r ′ + VXC [ns(~r)]

Edgar Solomonik Communication-avoiding parallel algorithms 79/ 49

Density Functional Theory
Coupled Cluster formalism

Density Function Theory (DFT), contd.

The exchange-correlation potential VXC is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

1 Given an (initial guess) n(~r) calculate Vs via Hartree-Fock
and functional

2 Solve (diagonalize) the Kohn-Sham equation to obtain each φi
3 Compute a new guess at n(~r) based on φi

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.

Edgar Solomonik Communication-avoiding parallel algorithms 80/ 49

Density Functional Theory
Coupled Cluster formalism

Linear algebra in DFT

DFT requires a few core numerical linear algebra kernels

Matrix multiplication (of rectangular matrices)

Linear equations solver

Symmetric eigensolver (diagonalization)

We proceed to study schemes for optimization of these algorithms.

Edgar Solomonik Communication-avoiding parallel algorithms 81/ 49

Density Functional Theory
Coupled Cluster formalism

2.5D algorithms for DFT

2.5D matrix multiplication is integrated into QBox.

QBox is a DFT code developed by Erik Draeger et al.

Depending on system/functional can spend as much as 80%
time in MM

Running on most of Sequoia and getting significant speed up
from 3D

1.75X speed-up on 8192 nodes 1792 gold atoms, 31
electrons/atom

Eventually hope to build and integrate a 3D eigensolver into
QBox

Edgar Solomonik Communication-avoiding parallel algorithms 82/ 49

Density Functional Theory
Coupled Cluster formalism

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP i

j t
a
i tbj ,

F̃m
e = f m

e +
∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f a

e −
∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

van
ef t fn ,

F̃m
i = (1− δmi)f m

i +
∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Edgar Solomonik Communication-avoiding parallel algorithms 83/ 49

Density Functional Theory
Coupled Cluster formalism

Our CCSD factorization

W̃ mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃ mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = vam

ie −
∑
n

W̃ mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vam

ij + P i
j

∑
e

vam
ie tej +

1

2

∑
ef

vam
ef τ

ef
ij ,

za
i = f a

i −
∑
m

F̃m
i tam +

∑
e

f a
e tei +

∑
em

vma
ei tem +

∑
em

vae
im F̃m

e +
1

2

∑
efm

vam
ef τ

ef
im −

1

2

∑
emn

W̃ mn
ei teamn,

zab
ij = vab

ij + P i
j

∑
e

vab
ie tej + Pa

bP i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm + Pa

b

∑
e

F̃ a
e tebij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

vab
ef τ

ef
ij +

1

2

∑
mn

W̃ mn
ij τ abmn,

Edgar Solomonik Communication-avoiding parallel algorithms 84/ 49

Density Functional Theory
Coupled Cluster formalism

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√

M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Communication-avoiding parallel algorithms 85/ 49

	Introduction
	Why communication matters

	Communication lower bounds
	Latency lower bound

	2.5D algorithms
	LU factorization
	QR factorization and symmetric eigensolve
	Tensor contractions

	Electronic structure calculations
	Coupled Cluster
	CCSD implementation

	Future directions
	Appendix
	Density Functional Theory
	Coupled Cluster formalism

