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Introduction

Theoretical cost model

What costs do we consider?

We count three architectural costs

α – network processor-to-processor latency

β – time to transfer a word of data between two processors

γ – time to perform a floating point operation on local data

We consider three algorithmic costs

S – number of messages sent

W – number of words of data moved

F – number of local floating point operations performed

The time of the algorithm is then bound by these parameters

max(S · α,W · β,F · γ) ≤ execution time ≤ S · α + W · β + F · γ.
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Introduction

Theoretical cost model

How do we measure algorithmic costs?

Would like to measure costs ”along the critical path”

The ”critical path” is the longest execution path during
execution

Would like to obtain lower and upper bounds on the length of
the critical path

Communication lower bound approach

Define a computation according to its higher level dependency
structure

Consider all possible parallel schedules and prove bound on
shortest path

Algorithmic analysis

Define a parallel schedule for a computation

Consider all paths in the schedule and bound their length
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Communication lower bounds

Bandwidth lower bounds

Parallel communication lower bounds

For matrix multiplication of n-by-n matrices, in 1981 Hong and
Kung proved

W = Ω

(
n3

√
M

)
In 2004, Irony, Tiskin, and Toledo proved

Wp = Ω

(
n3

p ·
√

M

)
In 2010, Ballard, Demmel, Holtz, and Schwartz showed that this
bound also holds for LU and QR factorizations, among other
algorithms.
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Communication lower bounds

Latency lower bounds

Dependency bubble expansion

Recall that a balanced vertex separator Q of a graph G = (V ,E ),
splits V − Q = W1 + W2 so that min(|W1|, |W2|) ≥ 1

4 |V | and
E = W1 × (Q + W1) + W2 × (Q + W2).

Definition (Dependency bubble cross-section expansion)

If B(R) is the dependency bubble formed around path R, the
bubble cross-section expansion, E (R) is the minimum size of a
balanced vertex separator of B(R).
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Communication lower bounds

Latency lower bounds

Dependency bubble expansion along path
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Communication lower bounds

Latency lower bounds

General latency lower-bound based on bubble expansion

Theorem (Bubble Expansion Theorem)

Let P be a dependency path in G , such that any subsequence
R ⊂ P, has bubble cross-section expansion E (R) = Ω(ε(|R|)) and
bubble size |B(R)| = Ω(σ(|R|)), where ε(b) = bd

1 ,and σ(b) = bd
2

for positive integers d1, d2 The bandwidth and latency costs of any
parallelization of G must obey the relations

F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b)

for all b ∈ [1, |P|].
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Communication lower bounds

Latency lower bounds

Appliation: LU factorization

We can use bubble expansion to prove better latency lower bounds
for LU factorization. LU factorization of square matrices gives a
cubic DAG vijk = (Lik · Ukj), where

Aij =
∑

k≤min(i ,j)

Lik · Ukj .

Theorem (Latency-bandwidth Trade-off in LU Factorization)

The parallel computation of lower-triangular L and upper-triangular
U such that A = LU where all matrices are n-by-n, must incur
flops cost F , latency cost S, and bandwidth cost W , such that

W · S = Ω(n2) and F · S2 = Ω(n3)
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QR factorization

Householder QR

Parallel Householder QR

Distribute the starting matrix A0 = A in a block-cyclic fashion

For the ith column in the matrix

1 Compute the norm of the column (requires communication of
norm)

2 Compute the Householder vector yi from the column and its
norm

3 Update the trailing matrix Ai+1 = (I − τiyiyT
i )Ai (requires

communication of yi )

Continue on to the next column of the trailing matrix



Communication avoiding parallel dense matrix factorizations 12/ 44

QR factorization

Householder QR

Aggregation of the trailing matrix update

The algorithm in the previous slide uses BLAS 2 routines, would
like to use BLAS 3

We can aggregate k Householder vectors into larger matrices
using (Puglisi 1992)

k∏
i=1

(I − τiyiyT
i ) = I − YTY T

T can be computed from Y using the identity

Y TY = T−1 + T−T

Using the aggregated form we may update the trailing matrix
via matrix multiplications
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QR factorization

Householder QR

Communication costs of Householder QR

Assuming a square matrix and processor grid the cost of
Householder QR is

γ · (2mn2 − 2n3/3)/p + β · (mn + n2)/
√

p + α · n log p.

Note that the bandwidth cost does not have a log p factor,
because we can broadcast n words in O(n) time

The bandwidth cost is optimal so long as there is no extra
available memory

However, the latency cost is much higher than the lower
bound (O(n log p) vs O(

√
p))
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QR factorization

Householder QR

Collective communication via recursive halving and
doubling

Diagram for broadcast on 8 processors:
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QR factorization

Communication-avoiding QR (CAQR)

Communication-avoiding QR (CAQR)

In paralle, CAQR reduces the latency cost over Householder QR.
We outline the algorithm for a n-by-n matrix below,

Distribute the matrix in a block-cyclic layout

For each panel of width b � n perform a Tall-Skinny-QR
(TSQR)

TSQR gives a tree representation which implictly represents
the orthogonal matrix

Apply the tree represenation obtained from TSQR to the
orthognal matrix
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QR factorization

Communication-avoiding QR (CAQR)

Tall-skinny QR factorization
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QR factorization

Communication-avoiding QR (CAQR)

CAQR trailing matrix update
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QR factorization

Communication-avoiding QR (CAQR)

Communication costs of CAQR

Assuming square matrices and binary tree TSQR, apply-QT ,
CAQR has the costs

γ ·
(

2mn2 − 2n3/3

p

)
+ β ·

(
2mn + n2 log p

√
p

)
+α ·

(
7

2

√
p log3 p

)
.

Major latency improvement over Householder QR (where it
was O(n log p))

Less efficient in terms of bandwidth due to term
O(n2 log p/

√
p)

Computational overheads involved in apply-QT necessitate
log3 p latency cost factor
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QR factorization

Householder reconstruction (CAQR-HR)

Basis kernel representations

In 1996, Sun and Bischof detailed many “basis-kernel”
representations of an orthogonal matrix

Q = I − YTY T = I −
[

Y1

Y2

]
T
[
Y T
1 Y T

2

]
. (1)

Y is refferred to as the “basis” and is not necessarily triangular

T is called the “kernel” and cn also have any structure

Losing the triangular structure restrictions allows the definition of
new representations.
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QR factorization

Householder reconstruction (CAQR-HR)

Yamamoto’s basis kernel representation

At SIAM ALA 2013, Yusaku Yamomoto presented a method to
construct a basis kernel representation from the implicit TSQR
representation

Having computed a TSQR of size n-by-b construct the first b
columns of Q, [Q1; Q2] explicitly

Now construct a basis-kernel representation as follows

Q = I − Ỹ T̃ Ỹ T = I −
[

Q1−I
Q2

] [
I−Q1

]−T [
(Q1−I )T QT

2

]
where I − Q1 is assumed to be nonsingular.

The assumption that I − Q1 is nonsingular can be dropped by
replacing I with a diagonal sign matrix S chosen so that
S − Q1 is nonsingular



Communication avoiding parallel dense matrix factorizations 21/ 44

QR factorization

Householder reconstruction (CAQR-HR)

Forming the first columns of the orthogonal matrix

Q1 Identity
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QR factorization

Householder reconstruction (CAQR-HR)

Reconstructing the Householder vectors

Yamamoto’s basis-kernel representation does not have the same
structure as Householder vectors, which we want for software
engineering reasons. Our method builds on Yamamoto’s to obtain
this representation,

Form the first b columns of the orthogonal matrix, [Q1; Q2] as
done by Yamamoto

Compute the LU factorization of [Q1 − S ; Q2] picking
elements of S to be the opposite sign of the diagonal entry of
the next column of the trailing matrix

The L factor from the LU factorization will be the
Householder vectors Y !

The U factor from the LU factorization will be −TY T
1 S!
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QR factorization

Householder reconstruction (CAQR-HR)

Uniqueness in exact arithmetic

Lemma

Given an orthonormal m × b matrix Q, let the compact QR
decomposition of Q given by the CAQR-HR algorithm be

Q =

([
In
0

]
− YTY T

1

)
S ,

where Y is unit lower triangular, Y1 is the top b × b block of Y ,
and T is the upper triangular b × b matrix satisfying
T−1 + TT = Y TY . Then S is a diagonal sign matrix, and

Q −
[

S
0

]
has a unique LU decomposition given by

Q −
[

S
0

]
= Y · (−TY T

1 S). (2)
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QR factorization

Householder reconstruction (CAQR-HR)

Stability proof for Householder reconstruction

Proven by Grey Ballard et al.

Lemma

In floating point arithmetic, given an orthonormal m × b matrix Q,
CAQR-HR computes factors S, Ỹ , and T̃ such that∥∥∥∥QS −

([
I
0

]
− Ỹ T̃ Ỹ T

1

)∥∥∥∥
F

≤ f3(b, ε).

where
f3(b, ε) = 2γb

(
b2 +

(
1 +
√

2
)

b
)

and Y1 is given by the first b rows of Y .
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QR factorization

Householder reconstruction (CAQR-HR)

Tall-skinny numerical stability experiments

Results collected by Mathias Jacquelin
ρ κ ‖A− QR‖2 ‖I − QTQ‖2

1e-01 5.1e+02 2.2e-15 9.3e-15
1e-03 5.0e+04 2.2e-15 8.4e-15
1e-05 5.1e+06 2.3e-15 8.7e-15
1e-07 5.0e+08 2.4e-15 1.1e-14
1e-09 5.0e+10 2.3e-15 9.9e-15
1e-11 4.9e+12 2.5e-15 1.0e-14
1e-13 5.0e+14 2.2e-15 8.8e-15
1e-15 5.0e+15 2.4e-15 9.7e-15
Error of CAQR-HR on tall and skinny matrices

(m = 1000, b = 200)
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QR factorization

Householder reconstruction (CAQR-HR)

Square numerical stability experiments

Results collected by Mathias Jacquelin
Matrix type κ ‖A− QR‖2 ‖I − QTQ‖2
A = 2 ∗ rand(m)− 1 2.1e+03 4.3e-15 (256) 2.8e-14 (2)
Golub-Klema-Stewart 2.2e+20 0.0e+00 (2) 0.0e+00 (2)
Break 1 distribution 1.0e+09 1.0e-14 (256) 2.8e-14 (2)
Break 9 distribution 1.0e+09 9.9e-15 (256) 2.9e-14 (2)
UΣV T with exponential distribution 4.2e+19 2.0e-15 (256) 2.8e-14 (2)
The devil’s stairs matrix 2.3e+19 2.4e-15 (256) 2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix 5.6e+56 0.0e+00 (2) 0.0e+00 (2)
Matrix ARC130 from Matrix Market 6.0e+10 8.8e-19 (16) 2.1e-15 (2)
Matrix FS 541 1 from Matrix Market 4.5e+03 5.8e-16 (64) 1.8e-15 (256)
DERIV2: second derivative 1.2e+06 2.8e-15 (256) 4.6e-14 (2)
FOXGOOD: severely ill-posed problem 5.7e+20 2.4e-15 (256) 2.8e-14 (2)

Errors of CAQR-HR on square matrices (m = 1000). The numbers
in parentheses give the panel width yielding largest error.
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QR factorization

Householder reconstruction (CAQR-HR)

Tall-skinny QR performance on Cray XE6
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QR factorization

Householder reconstruction (CAQR-HR)

Square matrix QR performance on Cray XE6
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QR factorization

Householder reconstruction (CAQR-HR)

Repeating the mistake

The original CAQR paper made the mistake of mislabeling the
performance of Householder QR, due to being unaware of
linear-scaling collective algorithms.

We made the mistake of mislabeling the performance of
CAQR by not considering more efficient trees for the
apply-QT stage

But as far as we know, everyone else made the same mistake
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QR factorization

Householder reconstruction (CAQR-HR)

Butterfly TSQR
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QR factorization

Householder reconstruction (CAQR-HR)

Butterfly TSQR apply QT : recursive halving stage
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QR factorization

Householder reconstruction (CAQR-HR)

Butterfly TSQR apply QT : recursive doubling stage
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LU factorization

LU without pivoting

2.5D recursive LU

A = L · U where L is lower-triangular and U is upper-triangular

A 2.5D recursive algorithm with no pivoting [A. Tiskin 2002]

Tiskin gives algorithm under the BSP model

Bulk Synchronous Parallel
considers communication and synchronization

We give an alternative distributed-memory adaptation and
implementation

Also, we lower-bound the latency cost
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LU factorization

LU without pivoting

2.5D LU factorization
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LU factorization

LU without pivoting

2.5D LU strong scaling (without pivoting)
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LU factorization

LU with pivoting

2.5D LU with pivoting

A = P · L · U, where P is a permutation matrix

2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

pairwise pivoting does not produce an explicit L
pairwise pivoting may have stability issues for large matrices

Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

pass up rows of A instead of U to avoid error accumulation
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LU factorization

LU with pivoting

Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

requires message/synchronization for each column

O(n) messages needed

Tournament pivoting is communication-optimal

performs a tournament to determine best pivot row candidates

passes up ’best rows’ of A
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LU factorization

LU with pivoting

2.5D LU factorization with tournament pivoting
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LU factorization

LU with pivoting

2.5D LU factorization with tournament pivoting
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LU factorization

LU with pivoting

Strong scaling of 2.5D LU with tournament pivoting
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LU factorization

LU with pivoting

2.5D LU on 65,536 cores
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LU factorization

LU with pivoting

2.5D LU on hybrid architectures
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LU factorization

LU with pivoting

2.5D LU on hybrid architectures
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Conclusions

Conclusions

Know your collective communication algorithms!

ScaLAPACK should have two block sizes

Avoid communication

Future work: symmetric eigensolve
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