An Overview of Cyclops Tensor Framework

Edgar Solomonik

University of Illinois at Urbana-Champaign

May 8, 2017

A stand-alone library for petascale tensor computations

Cyclops Tensor Framework (CTF)

- distributed-memory symmetric/sparse tensors as C++ objects
 Matrix<int> A(n, n, AS|SP, World(MPI_COMM_WORLD));
 Tensor<float> T(order, is_sparse, dims, syms, ring, world);
 T.read(...); T.write(...); T.slice(...); T.permute(...);
- parallel contraction/summation of tensors

```
Z["abij"] += V["ijab"];
B["ai"] = A["aiai"];
T["abij"] = T["abij"]*D["abij"];
W["mnij"] += 0.5*W["mnef"]*T["efij"];
Z["abij"] -= R["mnje"]*T3["abeimn"];
M["ij"] += Function<>([](double x){ return 1./x; })(v["j"]);
```

• development (1500 commits) since 2011, open source since 2013

• fundamental part of Aquarius, CC4S, integrated into QChem and Psi4

CTF parallel scalability

- CTF is tuned for massively-parallel architectures
 - multidimensional tensor blocking and processor grids
 - cyclic assignment of elements to processors is well-suited for symmetric and sparse tensors
 - performance-model-driven decomposition is done at runtime
 - optimized redistribution kernels for tensor transposition

Matrix multiplication partitioning

Best partitioning depends on dimensions of matrices and number of nonzeros for sparse matrices, tensor contractions are similar

Communication avoiding matrix multiplication

CTF uses the most efficient matrix multiplication algorithms

• the interprocessor communication cost of matrix multiplication C = AB of matrices with dims $m \times k$ and $k \times n$ on p processors is

$$W = \begin{cases} O\bigg(\min_{p_1 p_2 p_3 = p} \bigg[\frac{mk}{p_1 p_2} + \frac{kn}{p_2 p_3} + \frac{mn}{p_1 p_3} \bigg] \bigg) & : \text{dense} \\ \\ O\bigg(\min_{p_1 p_2 p_3 = p} \bigg[\frac{\operatorname{nnz}(A)}{p_1 p_2} + \frac{\operatorname{nnz}(B)}{p_2 p_3} + \frac{\operatorname{nnz}(C)}{p_1 p_3} \bigg] \bigg) & : \text{sparse} \end{cases}$$

 ${\ensuremath{\, \bullet \,}}$ communication-optimality depends on memory usage M

$$W = \begin{cases} \Omega \bigg(\frac{mnk}{p\sqrt{M}} \bigg) & : \, {\rm dense} \\ \\ \Omega \bigg(\frac{{\rm flops}(A,B,C)}{p\sqrt{M}} \bigg) & : \, {\rm sparse} \end{cases}$$

• CTF selects best p_1, p_2, p_3 subject to memory usage constraints on M

Data redistribution and matricization

Transitions between contractions require redistribution and refolding

- CTF defines a base distribution for each tensor (by default, over all processors), which can also be user-specified
- before each contraction, the tensor data is redistributed globally and matricized locally
- 3 types of global redistribution algorithms are optimized and threaded
- matricization for sparse tensors corresponds to a conversion to a compressed-sparse-row (CSR) matrix layout
- the cost of redistribution is part of the performance model used to select the contraction algorithm

Dense tensor application: coupled cluster using CTF

Extracted from Aquarius (lead by Devin Matthews) https://github.com/devinamatthews/aquarius

```
FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];
```

Dense tensor application: coupled cluster performance

CCSD up to 55 (50) water molecules with cc-pVDZ CCSDT up to 10 water molecules with cc-pVDZ

compares well to NWChem (up to 10x speed-ups for CCSDT)

Sparse tensor application: MP3 calculation

```
Tensor<> Ea, Ei, Fab, Fij, Vabij, Vijab, Vabcd, Vijkl, Vaibj;
... // compute above 1-e an 2-e integrals
Tensor <> T(4, Vabij.lens, *Vabij.wrld);
T["abij"] = Vabij["abij"];
divide_EaEi(Ea, Ei, T);
Tensor <> Z(4, Vabij.lens, *Vabij.wrld);
Z["abij"] = Vijab["ijab"];
Z["abii"] += Fab["af"]*T["fbii"]:
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Viikl["mnij"]*T["abmn"]:
Z["abij"] += Vaibj["amei"]*T["ebmj"];
divide_EaEi(Ea, Ei, Z);
double MP3_energy = Z["abij"]*Vabij["abij"];
```

A case-study of a naive sparse MP3 code

A naive dense version of division in MP2/MP3

```
void divide_EaEi(Tensor<> & Ea,
                 Tensor<> & Ei,
                 Tensor <> & T){
  Tensor <> D(4,T.lens,*T.wrld);
 D["abij"] += Ei["i"];
 D["abij"] += Ei["j"]:
 D["abij"] -= Ea["a"];
  D["abij"] -= Ea["b"];
  Transform<> div([](double & b){ b=1./b; });
  div(D["abij"]);
  T["abij"] = T["abij"]*D["abij"];
}
```

A case-study of a naive sparse MP3 code

A sparsity-aware version of division in MP2/MP3 using CTF functions

```
struct dp {
  double a. b:
  dp(int x=0){ a=0.0; b=0.0; }
  dp(double a_, double b_){ a=a_, b=b_; }
  dp operator+(dp const & p) const { return dp(a+p.a, b+p.b); }
};
Tensor<dp> TD(4, 1, T.lens, *T.wrld, Monoid<dp,false>());
TD["abij"] = Function<double,dp>(
               [](double d){ return dp(d, 0.0); }
                                 )(T["abii"]):
Transform<double,dp> ([](double d, dp & p){ return p.b += d; }
                      )(Ei["i"], TD["abij"]);
... // similar for Ej, Ea, Eb
T["abij"] = Function<dp,double>([](dp p){ return p.a/p.b; }
                                )(TD["abij"]);
```

Sparse tensor application: strong scaling

We study the time to solution of the sparse MP3 code, with (1) dense V and T (2) sparse V and dense T (3) sparse V and T

Sparse tensor application: weak scaling

We study the scaling to larger problems of the sparse MP3 code, with (1) dense V and T (2) sparse V and dense T (3) sparse V and T

Interoperability

- A Python interface for CTF is currently in development
 - Cython is used to expose C++ routines to Python
 - interoperability/back-end for numpy
 - numpy.einsum and array slicing implemented

Conversions to/from ScaLAPACK have been recently added

• selected ScaLAPACK matrix factorization routines likely to be interfaced in the future

CTF status and explorations

Much ongoing work and future directions in CTF for quantum chemistry

- performance improvement for batched tensor operations
- predefined output sparsity for contractions
- abstractions for tensor factorizations

Also lots of applications beyond quantum chemistry

- lattice QCD
- algebraic multigrid
- finite and spectral element methods
- shortest path computation in graphs and betweenness centrality
- FFT, bitonic sort, parallel scan, HSS matrix computations
- convolutional neural networks

Backup slides

Comparison with NWChem

NWChem built using one-sided MPI, not necessarily best performance

- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays

How does CTF achieve parallel scalability?

- CTF algorithms address fundamental parallelization challenges:
 - load balance
 - communication costs
 - amount of data sent or received
 - number of messages sent or received
 - amount of data moved between memory and cache
 - amount of data moved between memory and disk

Balancing load via a cyclic data decomposition

for sparse tensors, a cyclic layout also provides a load-balanced distribution

Our CCSD factorization

$$\begin{split} \tilde{W}_{ei}^{mn} &= v_{ei}^{mn} + \sum_{f} v_{ef}^{mn} t_{i}^{f}, \\ \tilde{W}_{ij}^{mn} &= v_{ij}^{mn} + P_{j}^{i} \sum_{e} v_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \\ \tilde{W}_{ie}^{am} &= v_{ie}^{am} - \sum_{n} \tilde{W}_{ei}^{mn} t_{n}^{a} + \sum_{f} v_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \\ \tilde{W}_{ij}^{am} &= v_{ij}^{am} + P_{j}^{i} \sum_{e} v_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \\ z_{i}^{a} &= f_{i}^{a} - \sum_{m} \tilde{F}_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} v_{ei}^{ma} t_{m}^{e} + \sum_{em} v_{im}^{ae} \tilde{F}_{e}^{m} + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef}, \\ &- \frac{1}{2} \sum_{emn} \tilde{W}_{ei}^{mn} t_{mn}^{ea}, \\ z_{ij}^{ab} &= v_{ij}^{ab} + P_{j}^{i} \sum_{e} v_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} \tilde{W}_{ie}^{am} t_{mj}^{eb} - P_{b}^{a} \sum_{m} \tilde{W}_{ij}^{am} t_{m}^{b}, \\ &+ P_{b}^{a} \sum_{e} \tilde{F}_{e}^{a} t_{ij}^{eb} - P_{j}^{i} \sum_{m} \tilde{F}_{m}^{im} t_{mj}^{ab} + \frac{1}{2} \sum_{ef} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{mn} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab}, \end{split}$$

Cyclops Tensor Framework

20/15

Stability of symmetry preserving algorithms

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira

- 4 processes per node, 16 threads per process
- Total time: 18 mins

v-orbitals, o-electrons

kernel	% of time	complexity	architectural bounds
DGEMM	45%	$O(v^4 o^2/p)$	flops/mem bandwidth
broadcasts	20%	$O(v^4 o^2 / p \sqrt{M})$	multicast bandwidth
prefix sum	10%	O(p)	allreduce bandwidth
data packing	7%	$O(v^2 o^2/p)$	integer ops
all-to-all-v	7%	$O(v^2 o^2/p)$	bisection bandwidth
tensor folding	4%	$O(v^2 o^2/p)$	memory bandwidth