
Efficient Tensor Contraction Algorithms for Coupled
Cluster

Edgar Solomonik

Department of Computer Science, ETH Zurich, Switzerland

20.6.2015

QESC 2015
Kobe, Japan

1 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 1/ 27

Outline

1 Cyclops Tensor Framework
Motivation
Interface
Coupled Cluster with CTF
Internal mechanism
Performance

2 Symmetry Preserving Algorithm
Instances in matrix computations
General symmetric contractions
Application to coupled-cluster

3 Conclusion

2 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 2/ 27

Cyclops Tensor Framework Motivation

The problem

We want portable infrastructure and scalable algorithms for tensor-based
electronic structure methods

the problem is not ‘ill-posed’, small perturbations to the equations of
a method do not fundamentally change the computation

a ‘stable’ solution must provide a high-level abstraction that permits
rapid manipulation of the algebra

scalability must be achieved both for intranode (shared memory) and
internode (distributed memory) parallelism

3 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 3/ 27

Cyclops Tensor Framework Motivation

The problem

We want portable infrastructure and scalable algorithms for tensor-based
electronic structure methods

the problem is not ‘ill-posed’, small perturbations to the equations of
a method do not fundamentally change the computation

a ‘stable’ solution must provide a high-level abstraction that permits
rapid manipulation of the algebra

scalability must be achieved both for intranode (shared memory) and
internode (distributed memory) parallelism

3 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 3/ 27

Cyclops Tensor Framework Motivation

The problem

We want portable infrastructure and scalable algorithms for tensor-based
electronic structure methods

the problem is not ‘ill-posed’, small perturbations to the equations of
a method do not fundamentally change the computation

a ‘stable’ solution must provide a high-level abstraction that permits
rapid manipulation of the algebra

scalability must be achieved both for intranode (shared memory) and
internode (distributed memory) parallelism

3 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 3/ 27

Cyclops Tensor Framework Motivation

The problem

We want portable infrastructure and scalable algorithms for tensor-based
electronic structure methods

the problem is not ‘ill-posed’, small perturbations to the equations of
a method do not fundamentally change the computation

a ‘stable’ solution must provide a high-level abstraction that permits
rapid manipulation of the algebra

scalability must be achieved both for intranode (shared memory) and
internode (distributed memory) parallelism

3 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 3/ 27

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Motivation

Our solution

Cyclops (cyclic operations) Tensor Framework (CTF)

provides abstractions for symmetric tensors and symmetrized
contractions

selects best parallelization for each contraction based on runtime
performance models

leverages only portable building blocks: C++, MPI, BLAS, and
OpenMP

optimized for distributed networks, shared memory, and accelerators

open source, BSD license, https://github.com/solomonik/ctf

4 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 4/ 27

https://github.com/solomonik/ctf

Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user

5 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 5/ 27

Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user

5 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 5/ 27

Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user

5 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 5/ 27

Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user

5 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 5/ 27

Cyclops Tensor Framework Interface

Distributed-memory tensor objects

CTF is orchestrated by bulk synchronous operations on a set of processors

CTF::World dw(MPI_COMM_WORLD);

CTF tensors are defined to be distributed over such worlds

CTF::Tensor<> T(4,{m,m,n,n},{AS,NS,AS,NS},dw);

an ‘AS’ dimension is antisymmetric with the next (also ‘SY’ and ‘SH’)

tensors are templated by the element type (double by default)

custom algebraic structures (set, group, monoid, semiring, ring) may
be defined by the user

5 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 5/ 27

Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗

6 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 6/ 27

Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗

6 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 6/ 27

Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗

6 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 6/ 27

Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗

6 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 6/ 27

Cyclops Tensor Framework Interface

Tensor algebra interface (credit: Devin Matthews)

CTF can express a tensor contraction like

Z ab
ij =

1

2
·W ab

ij + 2 · P(a, b)
∑
k

F a
k · T kb

ij

where P(a, b) implies antisymmetrization of index pair ab, as

Z["abij"] = 0.5*W["abij"];

Z["abij"] += 2.0*F["ak"]*T["kbij"];

for loops and summations implicit in syntax

P(a, b) is applied implicitly if Z is antisymmetric in ab

Z,F,T,W should all be defined on the same world and all processes
in the world must call the contraction bulk synchronously

user-defined (mixed-type) scalar tensor functions can be applied
instead of + and ∗

6 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 6/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Quantum chemistry codes using CTF

Aquarius was developed by Devin Matthews in conjunction with CTF

Libtensor has been integrated with CTF by Evgeny Epifanovsky

Q-Chem can leverage Libtensor and integration with CTF is almost
complete

7 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 7/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Quantum chemistry codes using CTF

Aquarius was developed by Devin Matthews in conjunction with CTF

Libtensor has been integrated with CTF by Evgeny Epifanovsky

Q-Chem can leverage Libtensor and integration with CTF is almost
complete

7 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 7/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Quantum chemistry codes using CTF

Aquarius was developed by Devin Matthews in conjunction with CTF

Libtensor has been integrated with CTF by Evgeny Epifanovsky

Q-Chem can leverage Libtensor and integration with CTF is almost
complete

7 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 7/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

CCSD

Extracted from Aquarius (Devin Matthews’ code,
https://github.com/devinamatthews/aquarius)

FMI["mi"] += 0.5*WMNEF["mnef"]*T(2)["efin"];

WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T(2)["efij"];

FAE["ae"] -= 0.5*WMNEF["mnef"]*T(2)["afmn"];

WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T(2)["afin"];

Z(2)["abij"] = WMNEF["ijab"];

Z(2)["abij"] += FAE["af"]*T(2)["fbij"];

Z(2)["abij"] -= FMI["ni"]*T(2)["abnj"];

Z(2)["abij"] += 0.5*WABEF["abef"]*T(2)["efij"];

Z(2)["abij"] += 0.5*WMNIJ["mnij"]*T(2)["abmn"];

Z(2)["abij"] -= WAMEI["amei"]*T(2)["ebmj"];

8 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 8/ 27

https://github.com/devinamatthews/aquarius

Cyclops Tensor Framework Coupled Cluster with CTF

CCSDT

Extracted from Aquarius (Devin Matthews’ code)

Z(1)["ai"] += 0.25*WMNEF["mnef"]*T(3)["aefimn"];

Z(2)["abij"] += 0.5*WAMEF["bmef"]*T(3)["aefijm"];

Z(2)["abij"] -= 0.5*WMNEJ["mnej"]*T(3)["abeinm"];

Z(2)["abij"] += FME["me"]*T(3)["abeijm"];

Z(3)["abcijk"] = WABEJ["bcek"]*T(2)["aeij"];

Z(3)["abcijk"] -= WAMIJ["bmjk"]*T(2)["acim"];

Z(3)["abcijk"] += FAE["ce"]*T(3)["abeijk"];

Z(3)["abcijk"] -= FMI["mk"]*T(3)["abcijm"];

Z(3)["abcijk"] += 0.5*WABEF["abef"]*T(3)["efcijk"];

Z(3)["abcijk"] += 0.5*WMNIJ["mnij"]*T(3)["abcmnk"];

Z(3)["abcijk"] -= WAMEI["amei"]*T(3)["ebcmjk"];

9 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 9/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Tensor data input and output

write, read, or accumulate data bulk synchronously by global index
(coordinate format)

input or output data from/to well-defined distributions faster

extract contiguous tensor slices (to a subcommunicator if desired)

extract permuted tensor slices (e.g. arbitrary subsets of rows and
columns)

10 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 10/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Tensor data input and output

write, read, or accumulate data bulk synchronously by global index
(coordinate format)

input or output data from/to well-defined distributions faster

extract contiguous tensor slices (to a subcommunicator if desired)

extract permuted tensor slices (e.g. arbitrary subsets of rows and
columns)

10 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 10/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Tensor data input and output

write, read, or accumulate data bulk synchronously by global index
(coordinate format)

input or output data from/to well-defined distributions faster

extract contiguous tensor slices (to a subcommunicator if desired)

extract permuted tensor slices (e.g. arbitrary subsets of rows and
columns)

10 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 10/ 27

Cyclops Tensor Framework Coupled Cluster with CTF

Tensor data input and output

write, read, or accumulate data bulk synchronously by global index
(coordinate format)

input or output data from/to well-defined distributions faster

extract contiguous tensor slices (to a subcommunicator if desired)

extract permuted tensor slices (e.g. arbitrary subsets of rows and
columns)

10 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 10/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Tensor decomposition and mapping

CTF tensor decomposition

cyclic layout used to preserve packed symmetric structure

overdecomposition employed to decouple the parallelization from the
physical processor grid

CTF mapping logic

arrange physical topology into all possible processor grids

for each contraction autotune over all topologies and mappings

select best mapping based on performance models (communication
cost, memory requirements, etc.)

11 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 11/ 27

Cyclops Tensor Framework Internal mechanism

Symmetric matrix representation

12 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 12/ 27

Cyclops Tensor Framework Internal mechanism

Blocked distributions of a symmetric matrix

13 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 13/ 27

Cyclops Tensor Framework Internal mechanism

Cyclic distribution of a symmetric matrix

14 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 14/ 27

Cyclops Tensor Framework Internal mechanism

Tensor contraction mapping visualization

15 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 15/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Internal mechanism

Algorithms and optimization for tensor redistribution

The following three redistribution kernels are provided by CTF

Sparse (key-value) redistribution (user input/output)

performs (threaded) binning of key-value pairs and sends the pairs

Dense mapping-to-mapping redistribution between arbitrary decompositions

performs (threaded) binning by implicit index and sends pure data

Block-to-block redistribution between similar distributions on different
processor grids

processors exchange blocks via point-to-point messages

16 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 16/ 27

Cyclops Tensor Framework Performance

Comparison with NWChem

NWChem is a commonly-used distributed-memory quantum chemistry
method suite

provides CCSD and CCSDT

uses Global Arrays (GA) tensor partitioning and contraction

Tensor Contraction Engine (TCE) factorizes CC equations and
generated GA code

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSD on Edison

NWChem w20
w15
w10
w8

Aquarius-CTF w20
w15
w10
w8

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128 256

se
co

nd
s

#nodes

Strong scaling CCSDT on Edison

NWChem w3
w2

Aquarius-CTF w4
w3
w2

17 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 17/ 27

Cyclops Tensor Framework Performance

Coupled-cluster code on BlueGene/Q (Mira)

CCSD up to 55 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 4

 8

 16

 32

 64

 128

 256

 512

 1024

512 1024 2048 4096 8192 16384 32768

Te
ra

flo
ps

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 10

 20

 30

 40

 50

 60

512 1024 2048 4096 8192 16384

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on BlueGene/Q

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

18 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 18/ 27

Cyclops Tensor Framework Performance

Coupled-cluster code on Cray XC30 (Edison)

CCSD up to 50 water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ

 1

 2
 4

 8
 16

 32
 64

 128
 256

 512

32 64 128 256 512 1024 2048

Te
ra

flo
ps

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

 50

 100

 150

 200

 250

 300

 350

32 64 128 256 512 1024 2048

G
ig

af
lo

ps
/n

od
e

#nodes

Weak scaling on Edison

Aquarius-CTF CCSD
Aquarius-CTF CCSDT

19 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 19/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
(n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions

20 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 20/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
(n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions

20 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 20/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
(n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions

20 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 20/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions

21 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 21/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions

21 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 21/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions

21 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 21/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
(n∑

k=1

Aik

)
· Bij−Aij ·

(n∑
k=1

Bik

)

22 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 22/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
(n∑

k=1

Aik

)
· Bij−Aij ·

(n∑
k=1

Bik

)

22 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 22/ 27

Symmetry Preserving Algorithm Instances in matrix computations

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
(n∑

k=1

Aik

)
· Bij−Aij ·

(n∑
k=1

Bik

)

22 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 22/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm General symmetric contractions

Symmetry preserving algorithm generalization

Any fully symmetrized contraction of two fully symmetric tensors with
a total of ω indices can be done with nω/ω! +O(nω−1) multiplications

Extensions to antisymmetric tensors and antisymmetrized
contractions possible, but not for all cases

Extends to all complex/Hermitian cases

Also applicable to contractions of a tensor with itself, in particular A2

for symmetric or antisymmetric matrix A requires n3/6 multiplications

Nonsymmetric A2 (or more generally A · B + B · A for nonsymmetric
matrices A, B) can be done in 2n3/3 operations

Numerical stability confirmed via proof and experiments

Communication cost lower and upper bounds derived

23 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 23/ 27

Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD

The CCSD contraction

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V j k̄

bc̄

usually requires 2n6 total operations.

The symmetry-preserving algorithm can be applied over the indices

Za =
∑
b

Tab · Vb

with each multiplication being a contraction over the other four indices
i ,j ,c̄,k̄, which is more expensive than the addition operations, yielding n6

operations to leading order.

24 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 24/ 27

Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD

The CCSD contraction

Z ak̄
i c̄ =

∑
b

∑
j

T ab
ij · V j k̄

bc̄

usually requires 2n6 total operations.
The symmetry-preserving algorithm can be applied over the indices

Za =
∑
b

Tab · Vb

with each multiplication being a contraction over the other four indices
i ,j ,c̄,k̄, which is more expensive than the addition operations, yielding n6

operations to leading order.

24 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 24/ 27

Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD(T) and CCSDT(Q)

The CCSD(T) contraction

T abc̄
ij k̄

= P(a, b)P(i , j)
n∑

l̄=1

T ac̄
i l̄

·W l̄b
j k̄

usually requires 2n7 total operations.

The symmetry-preserving algorithm can be applied over the indices

Tab = P(a, b)Ta ·Wb and Tij = P(i , j)Ti · Tj

with each multiplication in the latter being a contraction over the
remaining three indices c̄ ,k̄ , and l̄ , for a total of n7/2 leading order
operations.
For a similar CCSDT(Q) contraction, which usually requires n9/2
operations, the symmetry preserving algorithm achieves n9/18.

25 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 25/ 27

Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD(T) and CCSDT(Q)

The CCSD(T) contraction

T abc̄
ij k̄

= P(a, b)P(i , j)
n∑

l̄=1

T ac̄
i l̄

·W l̄b
j k̄

usually requires 2n7 total operations.
The symmetry-preserving algorithm can be applied over the indices

Tab = P(a, b)Ta ·Wb and Tij = P(i , j)Ti · Tj

with each multiplication in the latter being a contraction over the
remaining three indices c̄ ,k̄ , and l̄ , for a total of n7/2 leading order
operations.

For a similar CCSDT(Q) contraction, which usually requires n9/2
operations, the symmetry preserving algorithm achieves n9/18.

25 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 25/ 27

Symmetry Preserving Algorithm Application to coupled-cluster

Application to CCSD(T) and CCSDT(Q)

The CCSD(T) contraction

T abc̄
ij k̄

= P(a, b)P(i , j)
n∑

l̄=1

T ac̄
i l̄

·W l̄b
j k̄

usually requires 2n7 total operations.
The symmetry-preserving algorithm can be applied over the indices

Tab = P(a, b)Ta ·Wb and Tij = P(i , j)Ti · Tj

with each multiplication in the latter being a contraction over the
remaining three indices c̄ ,k̄ , and l̄ , for a total of n7/2 leading order
operations.
For a similar CCSDT(Q) contraction, which usually requires n9/2
operations, the symmetry preserving algorithm achieves n9/18.

25 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 25/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Conclusion

Future work on symmetry-preserving algorithms

full cost derivations for CC methods

communication cost analysis for partially-symmetric contractions

integration into CTF (the power of abstraction: one day you update
the CTF version and your CC code becomes faster)

Future work on CTF

iterative performance-model refinement via online learning

automatic multi-contraction scheduling

sparse tensors

26 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 26/ 27

Conclusion

Acknowledgements

Contributors to mentioned work

Devin Matthews (UT Austin)

James Demmel (UC Berkeley)

Jeff Hammond (Intel Corp.)

Evgeny Epifanovsky (Q-Chem, Inc.)

Torsten Hoefler (ETH Zurich)

Resources

US DOE Computational Science Graduate Fellowship

ETH Zurich Postdoctoral Fellowship

Supercomputer allocations via NERSC and ANL

27 / 27 Efficient Tensor Contraction Algorithms for Coupled Cluster 27/ 27

	Cyclops Tensor Framework
	Motivation
	Interface
	Coupled Cluster with CTF
	Internal mechanism
	Performance

	Symmetry Preserving Algorithm
	Instances in matrix computations
	General symmetric contractions
	Application to coupled-cluster

	Conclusion

