Improving communication performance in dense linear algebra via topology-aware collectives

Edgar Solomonik*, Abhinav Bhatele[†], and James Demmel*

* University of California, Berkeley † Lawrence Livermore National Laboratory

Supercomputing, November 2011

글 🖌 🖌 글 🕨

Outline

Collective communication Rectangular collectives

2.5D algorithms 2.5D Matrix Multiplication 2.5D LU factorization

Modelling exascale

Multicast performance MM and LU performance

'문▶ ★ 문▶ '문|님

Rectangular collectives

Performance of multicast (BG/P vs Cray)

-

Why the performance discrepancy in multicasts?

Cray machines use binomial multicasts

- Form spanning tree from a list of nodes
- Route copies of message down each branch
- Network contention degrades utilization on a 3D torus
- BG/P uses rectangular multicasts
 - Require network topology to be a k-ary n-cube
 - Form 2n edge-disjoint spanning trees
 - Route in different dimensional order
 - Use both directions of bidirectional network

Rectangular collectives

2D rectangular multicasts trees

[Watts and Van De Geijn 95]

글 🛌 글 🔁

Another look at that first plot

How much better are rectangular algorithms on P = 4096 nodes?

- Binomial collectives on XE6
 - 1/30th of link bandwidth
- Rectangular collectives on BG/P
 - 4X the link bandwidth
- 120X improvement in efficiency!

How can we apply this?

Matrix multiplication

★ 문 ▶ 문 문 말

≣ ⊁

2D matrix multiplication

[Cannon 69], [Van De Geijn and Watts 97]

米間を 米温を 米温を 温

-

3D matrix multiplication

[Agarwal et al 95], [Aggarwal, Chandra, and Snir 90], [Bernsten 89]

▲ ∃ ► ∃ = √ Q ∩

2.5D matrix multiplication

Strong scaling matrix multiplication

2.5D Matrix Multiplication 2.5D LU factorization

2.5D MM on 65,536 cores

Matrix multiplication on 16,384 nodes of BG/P

2.5D Matrix Multiplication 2.5D LU factorization

Cost breakdown of MM on 65,536 cores

Matrix multiplication on 16,384 nodes of BG/P

2.5D Matrix Multiplication 2.5D LU factorization

2.5D LU factorization

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2.5D Matrix Multiplication 2.5D LU factorization

2.5D LU factorization

2.5D Matrix Multiplication 2.5D LU factorization

2.5D LU factorization

2.5D Matrix Multiplication 2.5D LU factorization

2.5D LU factorization

[Solomonik and Demmel, EuroPar '11, Distinguished Paper]

▶ ▲ 분 ▶ 분 1 = ● ○ ○

Edgar Solomonik Mapping

Mapping dense linear algebra 17/29

2.5D algorithms Modelling exascale

2.5D LU factorization

2.5D LU on 65,536 cores

LU on 16,384 nodes of BG/P (n=131,072)

ъ

2.5D Matrix Multiplication 2.5D LU factorization

Rectangular (RCT) vs binomial (BNM) collectives

Binomial vs rectangular collectives on BG/P (n=131,072, p=16,384)

A model for rectangular multicasts

$$t_{mcast} = m/B_n + 2(d+1) \cdot o + 3L + d \cdot P^{1/d} \cdot (2o+L)$$

Our multicast model consists of 3 terms

- 1. m/B_n , the bandwidth cost
- 2. $2(d+1) \cdot o + 3L$, the multicast start-up overhead
- 3. $d \cdot P^{1/d} \cdot (2o + L)$, the path overhead

A model for binomial multicasts

$$t_{bnm} = \log_2(P) \cdot (m/B_n + 2o + L)$$

- ▶ The root of the binomial tree sends log₂(P) copies of message
- The setup overhead is overlapped with the path overhead
- We assume no contention

레이 세종이 세종이 비행

Model verification: one dimension

DCMF Broadcast on a ring of 8 nodes of BG/P

Edgar Solomonik Mapping dense linear algebra 22/29

2.5D algorithms Modelling exascale

Model verification: two dimensions

DCMF Broadcast on 64 (8x8) nodes of BG/P

Model verification: three dimensions

Multicast performance MM and LU performance

Modelling collectives at exascale (p = 262, 144)

Exascale broadcast performance

-

Modelling matrix multiplication at exascale

MM strong scaling at exascale (xy plane to full xyz torus)

Modelling LU factorization at exascale

LU strong scaling at exascale (xy plane to full xyz torus)

Conclusion

Topology-aware scheduling

- Present in IBM BG but not in Cray supercomputers
- Avoids network contention/congestion
- Enables optimized communication collectives
- Leads to simple communication performance models
- Future work
 - An automated framework for topology-aware mapping
 - Tensor computations mapping
 - Better models for network contention

• • = • • = • =

Acknowledgements

- Krell CSGF DOE fellowship (DE-AC02-06CH11357)
- Resources at Argonne National Lab and Lawrence Berkeley National Lab
 - DE-SC0003959
 - DE-SC0004938
 - DE-FC02-06-ER25786
 - DE-SC0001845
 - DE-AC02-06CH11357
- Berkeley ParLab funding
 - ▶ Microsoft (Award #024263) and Intel (Award #024894)
 - ► U.C. Discovery (Award #DIG07-10227)
- Released by Lawrence Livermore National Laboratory as LLNL-PRES-514231

□ > < 글 > < 글 > 도비크

Backup slides

母▶ ∢ ≣▶

A model for rectangular reductions

$$t_{red} = \max[m/(8\gamma), 3m/\beta, m/B_n] + 2(d+1) \cdot o + 3L + d \cdot P^{1/d} \cdot (2o+L)$$

- Any multicast tree can be inverted to produce a reduction tree
- The reduction operator must be applied at each node
 - each node operates on 2m data
 - both the memory bandwidth and computation cost can be overlapped

∃ >

Rectangular reduction performance on BG/P

 BG/P rectangular reduction performs significantly worse than multicast

글 🖒 🖃 님

Performance of custom line reduction

글 🛌 글 글

A new LU latency lower bound

flops lower bound requires $d = \Omega(\sqrt{p})$ blocks/messages bandwidth lower bound required $d = \Omega(\sqrt{cp})$ blocks/messages

2.5D LU strong scaling (without pivoting)

LU without pivoting on BG/P (n=65,536)

Strong scaling of 2.5D LU with tournament pivoting

LU with tournament pivoting on BG/P (n=65,536)