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Introduction Symmetry in coupled cluster contractions

Exploiting symmetry by unfolding

Let A and B be two n × n antisymmetric matrices and consider the
contraction,

c =
n∑

i=1

n∑
j=1

Aij · Bij = 2
n∑

i=1

i−1∑
j=1

Aij · Bij

This contraction may be unfolded into an inner product of vectors,

c = 〈vec(A), vec(B)〉 = 〈vech(A), vech(B)〉

where vech (half-vectorization) takes only the unique entries.

This technique is 8X faster for the following CCSD contraction,

Z ab
ij =

∑
e,f

V ab
ef · T ef

ij → Z a<b
i<j =

∑
e<f

V a<b
e<f · T

e<f
i<j

as the tensors are antisymmetric in (a, b), (i , j), and (e, f ).
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Introduction Symmetry in coupled cluster contractions

Symmetry that does not conform to unfoldings

Consider the multiplication of an antisymmetric matrix A with a vector b,

ci =
∑
j

Aij · bj

while Aij = −Aji , the quantities Aijbj and Ajibi are arbitrarily different.

Now consider another contraction from the CCSD method,

Z ak̄
i c̄ =

∑
b,j

T ab
ij · V

j k̄
bc̄

where T is partially antisymmetric,

T ab
ij = −T ba

ij = −T ab
ji = T ba

ji

it is not possible to unfold these tensors and obtain a reduced-size matrix
multiplication.
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Symmetry preserving algorithms Matrix examples

Symmetric-matrix–vector multiplication

Consider symmetric n × n matrix A and vectors b, c

c = A · b is usually done by computing a nonsymmetric intermediate
matrix W,

Wij = Aij · bj ci =
n∑

j=1

Wij

which requires n2 multiplications and n2 additions.

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = Aij · (bi + bj) ci =
n∑

j=1

Zij −
( n∑

j=1

Aij

)
· bi

which requires n2

2 multiplications and 5n2

2 additions.
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Symmetry preserving algorithms Matrix examples

Symmetrized rank-two outer product

Consider vectors a,b of dimension n

Symmetric matrix C = a · bT + b · aT is usually done by computing a
nonsymmetric intermediate matrix W,

Wij = ai · bj Cij = Wij + Wji

which requires n2 multiplications and n2/2 additions.

The symmetry preserving algorithm employs a symmetric intermediate
matrix Z,

Zij = (ai + aj) · (bi + bj) Cij = Zij − ai · bi − aj · bj

which requires n2

2 multiplications and 2n2 additions.
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Symmetry preserving algorithms Matrix examples

Symmetrized matrix multiplication

Consider symmetric n × n matrices A, B, and C

C = A · B + B · A is usually computed via a nonsymmetric
intermediate order 3 tensor W,

Wijk = Aik · Bkj W̄ij =
∑
k

Wijk Cij = Wij + Wji .

which requires n3 multiplications and n3 additions.

The symmetry preserving algorithm employs a symmetric intermediate
tensor Z using n3/6 multiplications and 7n3/6 additions,

Zijk = (Aij + Aik + Ajk) · (Bij + Bik + Bjk) vi =
n∑

k=1

Aik · Bik

Cij =
n∑

k=1

Zijk−n · Aij · Bij−vi−vj−
( n∑

k=1

Aik

)
· Bij−Aij ·

( n∑
k=1

Bik

)
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Symmetry preserving algorithms General characteristics

Symmetry preserving algorithm

Consider contraction of symmetric tensors A of order s + v and B of order
v + t that is symmetrized to produce a symmetric tensor C of order s + t

Let ω = s + t + v

the symmetry preserving algorithm computes the order ω symmetric
tensor Ẑ, ∀~i = (i1, . . . , iω), 1 ≤ i1 ≤ · · · ≤ iω ≤ n,

~j ∈ χs+v (~i), Â~i ← A~j
~l ∈ χv+t(~i), B̂~i ← B~l

Ẑ~i = Â~i · B̂~i
~h ∈ χs+t(~i), Z~h ← Ẑ~i

where χk(~i) is the set of all
(
ω
k

)
combinations of k elements in~i

C = Z− . . . can then be computed with O(nω−1) multiplications
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Symmetry preserving algorithms General characteristics

Symmetry preserving algorithm costs

Let Υ(s,t,v) be the nonsymmetric contraction algorithm

Let Ψ(s,t,v) be the direct evaluation algorithm

Let Φ(s,t,v) be the symmetry preserving algorithm

ω s t v FΥ FΨ FΦ application cases
s+t+v s t v nω

(
n
s

)(
n
t

)(
n
v

) (
n
ω

)
generally

2 0 0 2 n2 n2/2 n2/2 Frobenius norm of sym. mat.
2 1 0 1 n2 n2 n2/2 symv, hemv, (symm, hemm)
2 1 1 0 n2 n2 n2/2 syr2, her2, (syr2k, her2k)
3 1 1 1 n3 n3 n3/6 matrix (anti)commutator

where FX is the number of multiplications computed by algorithm X
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Symmetry preserving algorithms General characteristics

Antisymmetry and matrix powers

The symmetry preserving algorithm can compute

symmetrized products of two symmetric or two antisymmetric tensors

antisymmetrized products of a symmetric and an antisymmetric tensor

Hermitian tensor contractions

A2 for symmetric or antisymmetric A with n3/6 multiplications

A2 for nonsymmetric A (or A · B + B · A for nonsymmetric A, B)
with 2n3/3 multiplications

that CCSD contraction,

Z ak̄
i c̄ =

∑
b,j

T ab
ij · V

j k̄
bc̄

in n6 operations (2X fewer) via Φ(1,0,1) ⊗Υ(1,2,1)
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Symmetry preserving algorithms As bilinear algorithms

Bilinear algorithms

A bilinear algorithm is defined by three matrices: F(A), F(B), F(C)

Given input vectors a and b, it computes vector,

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)]

where ◦ is the Hadamard (pointwise) product

the number of columns in the three matrices is equal and is the
bilinear algorithm rank

the number of rows in each matrix corresponds to the number of
inputs (dimensions of a and b) and outputs (dimension of c)

matrix multiplication and symmetric tensor contraction correspond to
different bilinear algorithms (problems)

the bilinear rank is the number of multiplications, for the symmetry
preserving algorithm, it is

(n
ω

)
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Symmetry preserving algorithms As bilinear algorithms

Symmetry preserving algorithm as a bilinear algorithm

The bilinear algorithm

c = F(C)[(F(A)Ta) ◦ (F(B)Tb)]

for computing Z (as c) is encoded as follows

~j ∈ χs+v (~i), Â~i ← A~j â = F(A)Ta

~l ∈ χv+t(~i), B̂~i ← B~l b̂ = F(B)Tb

Ẑ~i = Â~i · B̂~i ẑ = â ◦ b̂
~h ∈ χs+t(~i), Z~h ← Ẑ~i c = F(C)ẑ
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Communication lower bounds For general bilinear algorithms

Expansion in bilinear algorithms

Given Λ = (F(A),F(B),F(C)), we say Λsub ⊆ Λ if there exists projection
matrix P such that,

Λsub = (F(A)P,F(B)P,F(C)P),

the projection matrix extracts #cols(P) columns of each matrix.

A bilinear algorithm Λ has expansion bound EΛ : N3 → N, if for all

Λsub := (F
(A)
sub,F

(B)
sub,F

(C)
sub) ⊆ Λ

we have

rank(Λsub) ≤ EΛ

(
rank(F

(A)
sub), rank(F

(B)
sub), rank(F

(C)
sub)

)
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Communication lower bounds For general bilinear algorithms

Vertical communication in bilinear algorithms

Any schedule on a sequential machine with a cache of size H for
Λ = (F(A),F(B),F(C)) with expansion bound EΛ has vertical
communication cost,

QΛ ≥ max

[
2 rank(Λ)H

Emax
Λ (H)

,#rows(F(A)) + #rows(F(B)) + #rows(F(C))

]
where Emax

Λ (H) := max
c(A),c(B),c(C)∈N,c(A)+c(B)+c(C)=3H

EΛ(c(A), c(B), c(C))
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Communication lower bounds For general bilinear algorithms

Vertical communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k-by-n matrix B into m-by-n matrix C ,

EMM(c(A), c(B), c(C)) = (c(A)c(B)c(C))1/2

further, we have

Emax
MM (H) = max

c(A),c(B),c(C)∈N,c(A)+c(B)+c(C)≤3H
(c(A)c(B)c(C))1/2 = H3/2

so we obtain the expected bound,

QMM ≥ max

[
2 rank(MM)H

Emax
MM (H)

,#rows(F(A)) + #rows(F(B)) + #rows(F(C))

]
= max

[
2mnk√

H
,mk + kn + mn

]
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Communication lower bounds For general bilinear algorithms

Horizontal communication in bilinear algorithms

Any load balanced schedule on a parallel machine with p processes of
Λ = (F(A),F(B),F(C)) with expansion bound EΛ has horizontal
communication cost,

WΛ ≥ c(A) + c(B) + c(C)

for some (communicated amounts) c(A), c(B), c(C) ∈ N such that,

rank(Λ)/p ≤ EΛ(c(A) + #rows(F(A))/p,

c(B) + #rows(F(B))/p,

c(C) + #rows(F(C))/p)
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Communication lower bounds For general bilinear algorithms

Horizontal communication in matrix multiplication

For the classical (non-Strassen-like) matrix multiplication algorithm of
m-by-k matrix A with k-by-n matrix B into m-by-n matrix C on a parallel
machine of p processors,

WMM = Ω (WO(min(m, n, k),median(m, n, k),max(m, n, k), p))

where

WO(x , y , z , p) =


(
xyz
p

)2/3
: p > yz/x2

x
(
yz
p

)1/2
: yz/x2 ≥ p > z/y

xy : z/y ≥ p
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Communication lower bounds For classical symmetric contraction algorithms

Communication lower bounds for direct evaluation of
symmetric contractions

An expansion bound on Ψ(s,t,v) is

E(s,t,v)
Ψ (c(A), c(B), c(C)) = q

(
c(A)c(B)c(C)

)1/2
,

where q =
[(s+v

s

)(v+t
v

)(s+t
s

)]1/2
.

Therefore, the same (asymptotically) horizontal and vertical
communication lower bounds apply for Ψ(s,t,v) as for a matrix
multiplication with dimensions ns × nt × nv .
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Communication lower bounds For classical symmetric contraction algorithms

Communication lower bounds for direct evaluation of
symmetric contractions

Another expansion bound on Ψ(s,t,0) (when v = 0) is

E(s,t,0)
Ψ (c(A), c(B), c(C)) =

((
ω

s

)
−1

)
c(C)+min

(
(c(A))ω/s , (c(B))ω/t , c(C)

)
There are also symmetric bounds when s = 0 or t = 0.

When exactly one of s, t, v is zero, any load balanced schedule of Ψ(s,t,v)

on a parallel machine with p processors has horizontal communication cost,

WΨ = Ω
(

(nω/p)max(s,t,v)/ω
)

This can be greater than the corresponding nonsymmetric bound,

WΨ = Ω
(

(nω/p)1/2
)
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Communication lower bounds For the symmetry preserving algorithm

Communication lower bounds for the symmetry preserving
algorithm

An expansion bound on Φ(s,t,v) is

E(s,t,v)
Φ (c(A), c(B), c(C)) = min

(((
ω

t

)
c(A)

) ω
s+v

,((
ω

s

)
c(B)

) ω
v+t

,((
ω

v

)
c(C)

) ω
s+t
)

This yields communication bounds with κ := max(s + v , v + t, s + t),

QΦ = Ω

(
nωH

Hω/κ
+ nκ

)
WΦ =

{
Ω
(
(nω/p)κ/ω

)
: s, t, v > 0

Ω
(
(nω/p)max(s,t,v)/ω

)
: κ = ω
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Conclusion Summary

Conclusion

Summary:

Symmetry preserving algorithms lower the number of multiplications
necessary for symmetric tensor contractions

Reducing the number of multiplications, reduces bilinear rank, and
leads to overall cost improvements for nested algorithms

However, the communication cost requirements of symmetry
preserving algorithms are larger in certain cases

Future work:

communication lower bounds for nested algorithms (partially
symmetric contractions)

full derivation of cost improvements for applications, in particular
coupled cluster methods

high performance implementation
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Conclusion References

Further references

For more information see

ES and James Demmel; Contracting symmetric tensors using fewer
multiplications

ES, James Demmel, and Torsten Hoefler; Communication lower
bounds for tensor contraction algorithms
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Backup slides
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Symmetry preserving algorithm vs Strassen’s algorithm
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Nesting of bilinear algorithms

Given two bilinear algorithms:

Λ1 =(F
(A)
1 ,F

(B)
1 ,F

(C)
1 )

Λ2 =(F
(A)
2 ,F

(B)
2 ,F

(C)
2 )

We can nest them by computing their tensor product

Λ1 ⊗ Λ2 :=(F
(A)
1 ⊗ F

(A)
2 ,F

(B)
1 ⊗ F

(B)
2 ,F

(C)
1 ⊗ F

(C)
2 )

rank(Λ1 ⊗ Λ2) = rank(Λ1) · rank(Λ2)

24 / 21 Edgar Solomonik Minimizing communication in tensor contraction algorithms



Communication lower bounds for nested algorithms

Conjecture: if bilinear algorithms λ1 and λ2 have expansion bounds E1 and
E2, then λ1 ⊗ λ2 has expansion bound, E12(c(A), c(B), c(C))

= max
c

(A)
1 ,c

(B)
1 ,c

(C)
1 ,c

(A)
2 ,c

(B)
2 ,c

(C)
2 ∈N

c
(A)
1 c

(A)
2 =c(A),c

(B)
1 c

(B)
2 =c(B),c

(C)
1 c

(C)
2 =c(C)

[
E1(c

(A)
1 , c

(B)
1 , c

(C)
1 )E2(c

(A)
2 , c

(B)
2 , c

(C)
2 )

]

Simplified conjecture: consider matrices A and B, such that for some
α, β ∈ [0, 1] and any k ∈ N

any subset of k columns of A has rank at least kα

any subset of k columns of B has rank at least kβ

then any subset of k ∈ N columns of A⊗ B has rank at least kmin(α,β)

The first conjecture would provide lower bounds for the nested algorithms
we wish to use for partially-symmetric coupled-cluster contractions.
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