
Tradeoffs between synchronization,
communication, and work in parallel linear algebra

computations

Edgar Solomonik, Erin Carson, Nicholas Knight,
and James Demmel

Department of EECS, UC Berkeley

February, 2014

Edgar Solomonik Synchronization lower bounds 1/ 30



The problem, the algorithm, and the parallelization

A problem asks for a solution which satisfies a set of
properties with respect to a set of inputs (e.g. given A, find
triangular matrices L and U such that A = L · U)

An algorithm is a sequence of computer operations that
determines a solution to the problem

A parallelization is a schedule of the algorithm, which
partitions the operations amongst processors and defines the
necessary data movement between processors

Edgar Solomonik Synchronization lower bounds 2/ 30



The problem, the algorithm, and the parallelization

A problem asks for a solution which satisfies a set of
properties with respect to a set of inputs (e.g. given A, find
triangular matrices L and U such that A = L · U)

An algorithm is a sequence of computer operations that
determines a solution to the problem

A parallelization is a schedule of the algorithm, which
partitions the operations amongst processors and defines the
necessary data movement between processors

Edgar Solomonik Synchronization lower bounds 2/ 30



The problem, the algorithm, and the parallelization

A problem asks for a solution which satisfies a set of
properties with respect to a set of inputs (e.g. given A, find
triangular matrices L and U such that A = L · U)

An algorithm is a sequence of computer operations that
determines a solution to the problem

A parallelization is a schedule of the algorithm, which
partitions the operations amongst processors and defines the
necessary data movement between processors

Edgar Solomonik Synchronization lower bounds 2/ 30



Graphical representation of a parallel algorithm

We can represent an algorithm as a graph G = (V ,E ) where
V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, c), (b, c) ∈ E

We can represent a set of algorithms by working with
hypergraph representations H = (V , Ē )

Ē may represent the dependency of a value on a set of vertices
(e.g. reduction tree)
e.g. to compute d =

∑n
i=1 ci , we have d , ci ∈ V and

hyperedges ({c1, . . . cn}, {d}) ∈ Ē

Edgar Solomonik Synchronization lower bounds 3/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j

Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j

Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Parallelization schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Synchronization lower bounds 4/ 30



Cost model

We quantify interprocessor communication and synchronization
costs of a parallelization via a flat network model

γ - cost for a single computation (flop)

β - cost for a transfer of each byte between any pair of
processors

α - cost for a synchronization between any pair of processors

We measure the cost of a parallelization along the longest sequence
of dependent computations and data transfers (critical path)

F - critical path payload for computation cost

W - critical path payload for communication (bandwidth) cost

S - critical path payload for synchronization cost

Edgar Solomonik Synchronization lower bounds 5/ 30



Parallel schedule example

Edgar Solomonik Synchronization lower bounds 6/ 30



Critical path for computational cost

Edgar Solomonik Synchronization lower bounds 7/ 30



Critical path for synchronization cost

Edgar Solomonik Synchronization lower bounds 8/ 30



Critical path for communication cost

Edgar Solomonik Synchronization lower bounds 9/ 30



The duality of upper and lower bounds

Given an algorithm for a problem

A parallelization provides a schedule whose payload is an
upper bound on the cost of the algorithm

A parallelization of an algorithms optimal under a given cost
model, if there exists a matching lower bound on the cost of
the algorithm

We will first give some parallel algorithms (upper bounds) and
then show their optimality via a new technique

The focus of our technique will be on lower bounds for
synchronization cost, which manifest themselves as tradeoffs

Edgar Solomonik Synchronization lower bounds 10/ 30



The duality of upper and lower bounds

Given an algorithm for a problem

A parallelization provides a schedule whose payload is an
upper bound on the cost of the algorithm

A parallelization of an algorithms optimal under a given cost
model, if there exists a matching lower bound on the cost of
the algorithm

We will first give some parallel algorithms (upper bounds) and
then show their optimality via a new technique

The focus of our technique will be on lower bounds for
synchronization cost, which manifest themselves as tradeoffs

Edgar Solomonik Synchronization lower bounds 10/ 30



The duality of upper and lower bounds

Given an algorithm for a problem

A parallelization provides a schedule whose payload is an
upper bound on the cost of the algorithm

A parallelization of an algorithms optimal under a given cost
model, if there exists a matching lower bound on the cost of
the algorithm

We will first give some parallel algorithms (upper bounds) and
then show their optimality via a new technique

The focus of our technique will be on lower bounds for
synchronization cost, which manifest themselves as tradeoffs

Edgar Solomonik Synchronization lower bounds 10/ 30



The duality of upper and lower bounds

Given an algorithm for a problem

A parallelization provides a schedule whose payload is an
upper bound on the cost of the algorithm

A parallelization of an algorithms optimal under a given cost
model, if there exists a matching lower bound on the cost of
the algorithm

We will first give some parallel algorithms (upper bounds) and
then show their optimality via a new technique

The focus of our technique will be on lower bounds for
synchronization cost, which manifest themselves as tradeoffs

Edgar Solomonik Synchronization lower bounds 10/ 30



Solving a dense triangular system

Problem: For lower triangular dense matrix L and vector y of
dimension n, solve

L · x = y,

i.e.,
∑i

j=1 Lij · xj = yi , for i ∈ {1, . . . , n}.

Algorithm:

x = TRSV(L, y, n)

1 for i = 1 to n
2 for j = 1 to i − 1
3 Zij = Lij · xj
4 xi =

(
yi −

∑i−1
j=1 Zij

)
/Lii

This algorithm does not immediately yield a graph representation since a

summation order is not defined, but we can infer a hypergraph

dependency representation

Edgar Solomonik Synchronization lower bounds 11/ 30



Dependency Hypergraph: Triangular solve

Edgar Solomonik Synchronization lower bounds 12/ 30



Schedules for triangular solve

One instance of the above triangular solve algorithm is a diamond
DAG

wavefront algorithms [Heath 1988]

also algorithms given by [Papadimitriou and Ullman 1987] and
[Tiskin 1998]

These Diamond DAG schedules achieve the following costs for x of
dimension n, and some number of processors p ∈ [1, n]

computational: FTRSV = O(n2/p)

bandwidth: WTRSV = O(n)

synchronization: STRSV = O(p)

We see a tradeoff between computational and synchronization cost.

Edgar Solomonik Synchronization lower bounds 13/ 30



Obtaining a Cholesky factorization

Problem: The Cholesky factorization of a symmetric positive
definite matrix A is

A = L · LT ,

for a lower-triangular matrix L.

Algorithm:

L = Cholesky(A, n)

1 for j = 1 to n

2 Ljj =
√

Aij −
∑j−1

k=1 Ljk · Ljk
3 for i = j + 1 to n
4 for k = 1 to j − 1
5 Zijk = Lik · Ljk
6 Lij = (Aij −

∑j−1
k=1 Zijk)/Ljj

Again this algorithm yields only a hypergraph dependency
representation.

Edgar Solomonik Synchronization lower bounds 14/ 30



Cholesky dependency hypergraph

These diagrams show (a) the vertices Zijk in VGE with n = 16 and
(b) the hyperplane x12 and hyperedge e12,6 on HGE.

Edgar Solomonik Synchronization lower bounds 15/ 30



Parallelizations of Cholesky

For A of dimension n, with p processors, and some c ∈ [1, p1/3]
[Tiskin 2002] in BSP and 2.5D algorithms [ES, JD 2011] achieve
the costs

computational: FGE = O(n3/p)

bandwidth: WGE = O(n2/
√
cp)

synchronization: SGE = O(
√
cp)

We see a tradeoff between computational and synchronization
cost, as well as a tradeoff between bandwidth and synchronization
costs (the latter independent of the number of processors, p).

Algorithms with the same asymptotic costs also exist for LU with
pairwise or with tournament pivoting as well as for QR factorization

Edgar Solomonik Synchronization lower bounds 16/ 30



Dependency bubble

Definition (Dependency bubble)

Given two vertices u, v in a directed acyclic graph G = (V ,E ), the
dependency bubble B(G , (u, v)) is the union of all paths in G from
u to v .

Edgar Solomonik Synchronization lower bounds 17/ 30



Path-expander graph

Definition ((ε, σ)-path-expander)

Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency bubble B(G , (ui , ui+b))
has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

Edgar Solomonik Synchronization lower bounds 18/ 30



Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm, with a (ε, σ)-path-expander
dependency graph about a path of length n incurs the computation
(F ), bandwidth (W ), and latency (S) costs for some b ∈ [1, n],

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Edgar Solomonik Synchronization lower bounds 19/ 30



Demonstration of proof for (b, b2)-path-expander

Edgar Solomonik Synchronization lower bounds 20/ 30



Tradeoffs for triangular solve

Theorem

Any parallelization of any dependency graph GTRSV(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) ,

and furthermore, FTRSV · STRSV = Ω
(
n2
)
.

Proof.

Proof by application of path-based tradeoffs since GTRSV(n) is a
(b, b2)-path-expander dependency graph.

Edgar Solomonik Synchronization lower bounds 21/ 30



Attainability and related work on triangular solve

Diamond DAG lower bounds were also given by

Papadimitriou and Ullman [P.U. 1987]

Tiskin [T. 1998]

Previously noted algorithms for triangular solve attain these lower
bounds with the number of processors p = n/b

computational: FTRSV = Θ(n2/p)

bandwidth: WTRSV = Θ(n)

synchronization: STRSV = Θ(p)

Edgar Solomonik Synchronization lower bounds 22/ 30



Tradeoffs for Cholesky

Theorem

Any parallelization of any dependency graph GGE(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FGE = Ω
(
n · b2

)
, WGE = Ω (n · b) , SGE = Ω (n/b) ,

and furthermore, FGE · S2
GE = Ω

(
n3
)
, WGE · SGE = Ω

(
n2
)
.

Proof.

Proof by showing that GGE(n) is a (b2, b3)-path-expander about
the path corresponding to the calculation of the diagonal elements
of L.

Edgar Solomonik Synchronization lower bounds 23/ 30



Parallelizations of Cholesky

These lower bounds are attainable for b ∈ [n/
√
p, n/p2/3] by

existing algorithms, so for c ∈ [1, p1/3],

computational: FGE = Θ(n3/p)

bandwidth: WGE = Θ(n2/
√
cp)

synchronization: SGE = Θ(
√
cp)

Therefore, we have a tradeoff between communication and
synchronization

WGE · SGE = Θ(n2)

We conjecture that our lower bound technique is extensible to QR
and symmetric eigensolve algorithms.

Edgar Solomonik Synchronization lower bounds 24/ 30



Krylov subspace methods

We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.

Edgar Solomonik Synchronization lower bounds 25/ 30



Cost tradeoffs for Krylov subspace methods on stencils

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m + 1)d -point stencil, requires the following
computational, bandwidth, and latency costs for some
b ∈ {1, . . . s},

FKr = Ω
(
md ·bd · s

)
,WKr = Ω

(
md ·bd−1 · s

)
, SKr = Ω (s/b) .

and furthermore,

FKr · Sd
Kr = Ω

(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.

Edgar Solomonik Synchronization lower bounds 26/ 30



Proof of tradeoffs for Krylov subspace methods

Proof.

Done by showing that the dependency graph of a s-step
(2m + 1)d -point stencil is a (mdbd ,mdbd+1)-path-expander.

Edgar Solomonik Synchronization lower bounds 27/ 30



Attainability

The lower bounds may be attained via communication-avoiding
s-step algorithms (PA1 in Demmel, Hoemmen, Mohiyuddin, and
Yelick 2007)

FKr = O
(
md ·bd · s

)
,WKr = O

(
md ·bd−1 · s

)
, SKr = O (s/b) ,

under the assumption n/p1/d = O(bm).

Edgar Solomonik Synchronization lower bounds 28/ 30



Counterexample: All-Pairs Shortest-Paths (APSP)

The APSP problem seeks to find the shortest paths between all
pairs of vertices in graph G

The Floyd-Warshall algorithm is analogous to Gaussian elimination
on a different semiring and achieves costs

FFW = Θ(n3/p) WFW = Θ(n2/
√
cp) SFW = Θ(

√
cp)

Alexander Tiskin demonstrated that it is possible to augment
path-doubling to achieve the costs

FAPSP = O(n3/p) WAPSP = O(n2/
√
cp) SAPSP = O(log p)

Edgar Solomonik Synchronization lower bounds 29/ 30



Summary and conclusion

Proved tight synchronization lower bounds on schedules for
algorithms

triangular solve FTRSV · STRSV = Ω
(
n2
)

Gaussian Elimination
FGE · S2

GE = Ω
(
n3
)

and WGE · SGE = Ω(n2)

s-step Krylov subspace methods on (2m + 1)d -pt stencils
FKr · Sd

Kr = Ω
(
md · sd+1

)
and WKr · Sd−1

Kr = Ω
(
md · sd

)
Our lower bounds also extend naturally to a number of graph
algorithms

Floyd-Warshall is analogous to Gaussian Elimination

Bellman-Ford is analogous to Krylov subspace methods

However, it may be possible to find new algorithms rather than
parallel schedules to solve these problems with less
synchronization and communication cost (e.g. Tiskin’s APSP
algorithm, 2001)

Edgar Solomonik Synchronization lower bounds 30/ 30


