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Communication costs more than computation

Communication happens off-chip and on-chip and incurs two costs

I latency - time per message

I bandwidth - amount of data per unit time

These costs are becoming more expensive relative to flops

Table: Annual improvements

time per flop bandwidth latency

59% network 26% 15%

DRAM 23% 5%

Source: James Demmel [FOSC]
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Communication takes more energy than computation

Source: John Shalf (LBNL)
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Sequential communication lower bounds
We study asymptotic communication cost of matrix multiplication

cij =
∑
k

aik · bkj

by considering the 3D cuboid computational graph G . The data
dependencies of any subset R ⊂ G are given by projections onto
the three faces which represent A, B, and C.
A theorem by Loomis and Whitney: if |R| = Θ(M3/2), the size of
some projection is Ω(M). Think of M as the ’local memory size’
which fits computation chunk R. This gives a lower bound on the
bandwidth W and latency S costs

Ws = Ω

(
|G |√
M

)
,Ss = Ω

(
|G |
M3/2

)
First noted by [Hong and Kung 81], this idea has been extended to
a large class of computations [BDHS 11]
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Parallel communication lower bounds

If A, B, and C are square n-by-n matrices, we have |G | = n3, so

Ws = Ω

(
|G |√
M

)
= Ω

(
n3√
M

)
a similar lower bound argument holds during parallel execution
with p processors [ITT 2004],

Wp = Ω

(
n3

p ·
√
M

)
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Parallel matrix multiplication algorithms
Standard ’2D’ algorithms ([Cannon 69], [GW 97], [ABGJP 95])
assume M = 3n2/p and block A, B, and C. They have a cost of

W2D = O

(
n2
√
p

)
’3D’ algorithms ([Bernsten 89], [ACS 1990], [ABGJP 95], [MT 99])
assume M = 3n2/p2/3 and block the computation yielding

W3D = O

(
n2

p2/3

)
’2.5D’ algorithms ([MT 99], [SD 2011]) generalize this and attain
the lower bound for any M ∈ [3n2/p, 3n2/p2/3]

W2.5D = O

(
n3

p ·M

)
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Tensor contractions

We define a tensor contraction between A ∈ R⊗k , B ∈ R⊗l into
C ∈ R⊗m as

ci1i2...im =
∑

j1j2...jk+l−m

ai1i2...im−l j1j2...jk+l−m
· bj1j2...jk+l−mim−l+1im−l+2...im

Tensor contractions reduce to matrix multiplication via index
folding (let [ijk] denote a group of 3 indices folded into one),

c[i1i2...im−l ],[im−l+1im−l+2...im] =∑
[j1j2...jk+l−m]

a[i1i2...im−l ],[j1j2...jk+l−m] · b[j1j2...jk+l−m],[im−l+1im−l+2...im]

so here A, B, and C can be treated simply as matrices.
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Communication lower bound for tensor contractions

The computational graph corresponding to a tensor contraction
can be higher dimensional, but there are still only three projections
corresponding to A, B, and C. So, if the contraction necessitates
F floating point operations, the bandwidth lower bound is still just

Wp = Ω

(
F

p ·
√
M

)
.

Therefore. folding contractions into matrix multiplication and
running a good multiplication algorithm is communication-optimal.

Edgar Solomonik Cyclops Tensor Framework 9/ 44



Communication-avoiding algorithms
Coupled Cluster

Performance results
Future directions

Why communication matters
Matrix multiplication
Symmetric tensor contractions

Tensor symmetry
Tensors can have symmetry e.g.

a(ij)k = a(ji)k or a(ij)k = −a(ji)k

I am introducing more dubious notation, by denoting symmetric
groups of indices as (ab...). We now might face contractions like

c(ij)kl =
∑
pqr

a(ij)(pq) · b(pqk)(rl)

where the computational graph G can be thought of as a 7D tensor
with entries g(ij)kl(pq)r = (c(ij)kl , a(ij)(pq), b(pqk)(rl)). There are two
things that can happen to symmetries during a contraction:

I preserved, e.g. g(ij)kl(pq)r = g(ji)kl(pq)r
I broken, e.g. b(pqk)(rl) = b(pqk)(lr) but g(ij)kl(pq)r 6= g(ij)kr(pq)l
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Preserved symmetries in contractions

When a d-dimensional symmetry is preserved, a factor of d! can be
saved in memory and flops. This is simple to achieve, since the
d-dimensional index group can be folded into one index in a
packed layout, for instance

ckl = 2 ·
∑
[i<j]

ak[(i<j)] · b[(i<j)]l

Since we are folding the packed index, the iteration space of this
contraction is in effect equivalent to matrix multiplication, and
therefore easy to handle.
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Broken symmetries in contractions

When a symmetry is broken, no flops can be saved with respect to
unpacking. However, memory can be saved as the tensors can
remain stored in packed format. Matrix multiplication of two
symmetric tensors features a broken symmetry, which can be
computed in packed layout as

ckl =
∑
i

a(k<i) ·b(i<l) +a(i<k) ·b(i<l) +a(k<i) ·b(l<i) +a(i<k) ·b(l<i)

This requires four matrix multiplications, but each accesses only
the lower triangle of the matrices, so only that portion need be
stored.
If data replication is correctly utilized in the parallel algorithm
unpacking and doing permutations of contractions have equivalent
bandwidth costs.
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NWChem approach to contractions

A high-level description of NWChem’s algorithm for tensor
contractions:

I data layout is abstracted away by the Global Arrays framework

I Global Arrays uses one-sided communication for data
movement

I packed tensors are stored in blocks

I for each contraction, each process does a subset of the block
contractions

I each block is transposed and unpacked prior to contraction

I automatic load balancing is employed among processors
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Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

I tensor layout is carefully and dynamically orchestrated

I MPI collectives are used for all communication

I packed tensors are decomposed cyclically among processors

I for each contraction, a distributed layout is selected based on
internal performance models

I before contraction, tensors are redistributed to a new layout

I if there is enough memory, the tensors are (partially) unpacked

I all preserved symmetries and non-symmetric indices are folded
in preparation for GEMM

I nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner
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Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

I in a blocked distribution process pi owns
{vi ·n/p+1, . . . v(i+1)·n/p}

I in a cyclic distribution process pi owns {vi , v2i , . . . v(n/p)i}
A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form ≤ and not <, so in effect, diagonals are stored for
skew-symmetric tensors.
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Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)
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Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

1. if there is enough memory, unpack broken symmetries

2. perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

3. use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions
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A cyclic layout is still challenging

I In order to retain structure, all symmetric dimensions of a
tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I This logical mapping still needs to be mapped to a physical
network topology, which can be any shape
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Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be ’stretchable’
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Virtual processor grid construction

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C
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3D tensor mapping
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Multidimensional processor grids
CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

I a base grid, obtained from the physical topology or from
factorizing the number of processors

I folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

I mapping an index shared by two tensors in the contraction to
different processor grid dimensions

I running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

I replicating data along some processor dimensions ’a la 2.5D’
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2.5D algorithms for tensors

We incorporate data replication for communication minimization
into CTF

I Replicate only one tensor/matrix (minimize bandwidth but
not latency)

I In parallel, autotune over mappings to all possible physical
topologies

I Select mapping with least amount of communication that fits
in memory

I Achieve minimal communication for tensors of widely different
sizes
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Tensor redistribution

Between each contraction, a new layout is typically selected for
each tensor. This is a serious challenge, because a number of
things change at once

I the processor grid changes

I the virtualization factors change

I the padding along each dimension changes

A lot of effort has been put into making redistributions fast in CTF,
including a complex linear-time kernel and threading thereof. While
this kernel can still consume a significant fraction of the time, it
ceases to be a bottleneck for large contractions and scales well.
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Coupled Cluster definition
Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrödinger equation of the form

H|Ψ〉 = E |Ψ〉,

CC rewrites the wave-function |Ψ〉 as an excitation operator T̂
applied to the Slater determinant |Φ0〉

|Ψ〉 = eT̂|Φ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4
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Coupled Cluster derivation
To derive CC equations, a normal-ordered Hamiltonian is defined
as the sum of one-particle and two-particle interaction terms

ĤN = F̂N + V̂N

Solving the CC energy contribution can be done by computing
eigenvectors of the similarity-transformed Hamiltonian

H̄ = e−T̂ĤNe
T̂

Performing the CCSD truncation T̂ = T̂1 + T̂2 and applying the
Hadamard lemma of the Campbell-Baker-Hausdorff formula,

H̄ = ĤN + [ĤN , T̂1] + [ĤN , T̂2] +
1

2
[[ĤNT̂1], T̂1] . . .

which simplifies to

H̄ = ĤN + ĤNT̂1 + ĤNT̂2 + ĤNT̂2
1 + . . .
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Coupled Cluster equations
Left projecting the eigenvector equation, we can obtain an explicit
formula for the CC energy via Wick contraction

ECCSD−E0 = 〈Φ0|H̄|Φ0〉 =
∑
ia

fiat
a
i +

1

4

∑
abij

〈ij ||ab〉tabij +
1

2

∑
aibj

〈ij ||ab〉tai tbj

The tensor amplitude equations are derived in a similar fashion but
involve many more terms

0 = 〈Φa
i |H̄|Φ0〉 = fai −

∑
kc

fkct
c
i t

a
k + . . .

0 = 〈Φab
ij |H̄|Φ0〉 = 〈ab||ij〉+

∑
bj

〈ja||bi〉tbj + . . .

These equations then need to be factorized into two-tensor
contractions.
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Spin symmetry in tensors

I CC methods all deal with the tensors F̂, V̂, T̂n. In the spin
orbital formulation, these tensors have skew-symmetry e.g.

〈ab||ij〉 = v
(ab)
(ij) and t

(abc)
(ijk) . EOM methods introduce an

excitation operator R̂, which has similar structure.

I The tensors can be further factored into spin-blocks and the
resulting spin-integrated equations can factor out mixed-spin
terms. This yields a subdivision of previously symmetric
tensors into blocks, some of which are symmetric and some of
which are nonsymmetric.

I Some molecules also have point-group symmetries, which
allow factorization of the two-electron and amplitude tensors
into more blocks and restricting the equations further.
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Interfacing tensor contractions

At user-level, we aim to hide all the complexity of the parallel
framework and allow simple specification of contractions. The
interface uses Einstein notation and allows iteration over diagonals

C[”abij”]+ = A[”acij”] ·B[”cb”]

C[”aj”]+ = A[”aaaj”] ·B[”bb”]

with symmetries and spin-cases pre-specified for A, B, and C .
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Tensor definition

We allow the user to specify the spin-cases for each tensor and
perform the necessary contractions automatically. It seems natural
that this approach should be extensible to point-group symmetry
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CCSD

I UHF

I spin-integrated

I does not use disk

I does not exploit point-group symmetry

I not quite fully mature SCF, integrals, and IO, currently used
only for testing
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Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP

i
j t

a
i t

b
j ,

F̃m
e = f me +

∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f ae −

∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

vanef t
f
n ,

F̃m
i = (1− δmi )f

m
i +

∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,
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Our CCSD factorization

W̃mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = vamie −

∑
n

W̃mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vamij + P i

j

∑
e

vamie tej +
1

2

∑
ef

vamef τ
ef
ij ,

zai = f ai −
∑
m

F̃m
i tam +

∑
e

f ae t
e
i +

∑
em

vma
ei tem +

∑
em

vaeim F̃m
e +

1

2

∑
efm

vamef τ
ef
im −

1

2

∑
emn

W̃mn
ei teamn,

zabij = vabij + P i
j

∑
e

vabie tej + Pa
bP

i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm + Pa

b

∑
e

F̃ a
e t

eb
ij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

vabef τ
ef
ij +

1

2

∑
mn

W̃mn
ij τ abmn,
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Sequential performance comparison

The sequential performance is subpar, surprisingly due to the
nonsymmetric transpose (especially when the number of occupied
orbitals is relatively small). CCSD performance on a Xeon E5620,
single threaded, Intel MKL.

H2O/cc-pVQZ C3H4/aug-cc-pVDZ C2H2O4/cc-pVDZ

electrons 5 11 23

orbitals 115 105 94

MRCC 31 s/iter 66.2 s/iter 224 s/iter

NWChem 6.8 s/iter 16.8 s/iter 49 s/iter

CFOUR 4.9 s/iter 13 s/iter 34.7 s/iter

CTF 23.6 s/iter 32.5 s/iter 59.8 s/iter
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Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.
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Blue Gene/Q up to 1250 orbitals, 250 electrons
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Coupled Cluster efficiency on Blue Gene/Q
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Performance breakdown on BG/Q
Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√
M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth
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Performance breakdown on Cray XE6
Performance data for a CCSD iteration with 100 electrons and 500
orbitals on 256 nodes of Hopper
4 processes per node, 6 threads per process
Total time: 9 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 21% ⇓ 24% O(v4o2/p) flops/mem bandwidth

broadcasts 32% ⇑ 12% O(v4o2/p
√
M) multicast bandwidth

prefix sum 7% ⇓ 3% O(p) allreduce bandwidth

data packing 10% ⇑ 3% O(v2o2/p) integer ops

all-to-all-v 8% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Cyclops Tensor Framework 40/ 44



Communication-avoiding algorithms
Coupled Cluster

Performance results
Future directions

Higher-order Coupled Cluster

I CTF and surrounding infrastructure has been implemented
with no assumptions on maximum tensor dimension or
symmetry group size (does not mean there are no bugs
involving higher dimensions).

I CCSDT is in the works

I CCSDTQ is next on the plan

I CCSD(T) is currently lower priority because it will necessitate
more work
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Sparsity

I Coupled Cluster does not scale with system size!

I there is promising theory around associating a subset of
virtual orbitals with each electron

I there is a variety of low-rank decomposition methods, though
they seem orthogonal to this work

I multi-scale methods? (glue can be harder than the original
problem)
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An inquiry

Is there any application for symmetric tensor operations other than
contractions, e.g. eigenvalue problem or linear solver? For
example, solve for x in

a(ijk) · xkl = b(ij)l

such operations are well-defined because they are mapped to
matrices, and seem to pose interesting algorithmic questions.
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Summary and conclusion

I Communication cost and load balance matter, especially in
parallel

I Tensor contractions reduce to matrix multiplication, but
symmetries yield complications

I CTF resolves some of the challenges in a novel way, but has
its own drawbacks

I CTF runs in parallel
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Matrix factorizations and the symmetric eigenproblem

Density Function Theory (DFT)
DFT uses the fact that the ground-state wave-function Ψ0 is a
unique functional of the particle density n(~r)

Ψ0 = Ψ[n0]

Since Ĥ = T̂ + V̂ + Û, where T̂ , V̂ , and Û, are the kinetic,
potential, and interaction contributions respectively,

E [n0] = 〈Ψ[n0]|T̂ [n0] + V̂ [n0] + Û[n0]|Ψ[n0]〉
DFT assumes Û = 0, and solves the Kohn-Sham equations[

− ~2

2m
∇2 + Vs(~r)

]
φi (~r) = εiφi (~r)

where Vs has a exchange-correlation potential correction,

Vs(~r) = V (~r) +

∫
e2ns(~r ′)

|~r − ~r ′|
d3r ′ + VXC [ns(~r)]
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Matrix factorizations and the symmetric eigenproblem

Density Function Theory (DFT), contd.

The exchange-correlation potential VXC is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

1. Given an (initial guess) n(~r) calculate Vs via Hartree-Fock
and functional

2. Solve (diagonalize) the Kohn-Sham equation to obtain each φi

3. Compute a new guess at n(~r) based on φi

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.
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Matrix factorizations and the symmetric eigenproblem

Linear algebra in DFT

DFT requires a few core numerical linear algebra kernels

I Matrix multiplication (of rectangular matrices)

I Linear equations solver

I Symmetric eigensolver (diagonalization)

We proceed to study schemes for optimization of these algorithms.
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Matrix factorizations and the symmetric eigenproblem

Solutions to linear systems of equations

We want to solve some matrix equation

A · X = B

where A and B are known. Can solve by factorizing A = LU (L
lower triangular and U upper triangular) via Gaussian elimination,
then computing TRSMs

X = U−1L−1B

via triangular solves. If A is symmetric positive definite, we can use
Cholesky factorization. Cholesky and TRSM are no harder than
LU.
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Matrix factorizations and the symmetric eigenproblem

Non-pivoted LU factorization

for k = 0 to n − 1 do
U[k , k : n − 1] = A[k , k : n − 1]
for i = k + 1 to n − 1 do

L[i , k] = A[i , k]/U[k , k]
for j = k + 1 to n − 1 do

A[i , j ]− = L[i , k] · U[k , j ]

This algorithm has a dependency that requires

k ≤ i , k ≤ j .
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Matrix factorizations and the symmetric eigenproblem

Non-pivoted 2D LU factorization
On a l-by-l process grid

Algorithm 1 [L,U] = 2D-LU(A)

for k = 0 to n − 1 do
Factorize A[k , k] = L[k, k] · U[k , k]
Broadcast L[k , k] and U[k , k]
for p = 0 to l − 1 in parallel do

solve L[p, k] = A[p, k]U[k , k]−1

for q = 0 to l − 1 in parallel do
solve U[k , q] = L[k, k]−1A[1, k]

Broadcast L[p, k] and U[k , q]
for p = 0 to l − 1 in parallel do

for q = 0 to l − 1 in parallel do
A[p, q]− = L[p, k] · U[k, q]
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Matrix factorizations and the symmetric eigenproblem

3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]
I Tiskin gives algorithm under the BSP model

I Bulk Synchronous Parallel
I considers communication and synchronization

I We give an alternative distributed-memory adaptation and
implementation

I Also, we have a new lower-bound for the latency cost
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Matrix factorizations and the symmetric eigenproblem

3D non-pivoted LU and Cholesky

On a l-by-l-by-l process grid

for r = 0 to l − 1 do
[L[r , r ],U[r , r ]] = 2D-LU(A[r , r ])
Broadcast L[k , k] and U[k , k]
[L[r + 1 : l − 1, r ]] = 2D-TRSM(A[r + 1 : l − 1, r ],U[r , r ]);
[U[r , r + 1 : l − 1]] = 2D-TRSM(A[r , r + 1 : l − 1],L[r , r ]);
for s = 0 to l − 1 in parallel do

Broadcast L[p, rs] and U[rs, q]
for p = 0 to l − 1 in parallel do

for q = 0 to l − 1 in parallel do
A[p, q]− = L[p, rs] · U[rs, q]
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Matrix factorizations and the symmetric eigenproblem

2D blocked LU factorization

A
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Matrix factorizations and the symmetric eigenproblem

2D blocked LU factorization

L₀₀
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Matrix factorizations and the symmetric eigenproblem

2D blocked LU factorization
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Matrix factorizations and the symmetric eigenproblem

2D blocked LU factorization

L

U

S=A-LU
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Matrix factorizations and the symmetric eigenproblem

2D block-cyclic decomposition
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Matrix factorizations and the symmetric eigenproblem

2D block-cyclic LU factorization
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2D block-cyclic LU factorization
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Matrix factorizations and the symmetric eigenproblem

2D block-cyclic LU factorization
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S=A-LU
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization
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Matrix factorizations and the symmetric eigenproblem

2.5D LU strong scaling (without pivoting)
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Matrix factorizations and the symmetric eigenproblem

2.5D LU with pivoting

A = P · L · U, where P is a permutation matrix

I 2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

I pairwise pivoting does not produce an explicit L
I pairwise pivoting may have stability issues for large matrices

I Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

I pass up rows of A instead of U to avoid error accumulation
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Matrix factorizations and the symmetric eigenproblem

Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix

I requires message/synchronization for each column

I O(n) messages needed

Tournament pivoting is communication-optimal

I performs a tournament to determine best pivot row candidates

I passes up ’best rows’ of A
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization with tournament pivoting
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization with tournament pivoting
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization with tournament pivoting
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Matrix factorizations and the symmetric eigenproblem

2.5D LU factorization with tournament pivoting
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Matrix factorizations and the symmetric eigenproblem

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e 
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik Cyclops Tensor Framework 72/ 44



Matrix factorizations and the symmetric eigenproblem

Symmetric eigensolve via QR

To solve the symmetric eigenproblem on matrix A, we need to
diagonalize

A = UDUT

where U are the singular vectors and D is the singular values. This
can be done by a series of two-sided orthogonal transformations

A = U1U2 . . .UkDU
T
k . . .UT

2 UT
1

The process may be reduced to three stages: a QR factorization
reducing to banded form, a reduction from banded to tridiagonal,
and a tridiagonal eigensolve. We consider the QR, which is the
most expensive step.
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Matrix factorizations and the symmetric eigenproblem

3D QR factorization

A = Q · R where Q is orthogonal R is upper-triangular

I 3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]

I Tiskin minimizes latency and bandwidth by working on
slanted panels

I 3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates
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Matrix factorizations and the symmetric eigenproblem

3D QR factorization using the YT representation

The YT representation of Householder QR factorization is more
work efficient when computing only R

I We give an algorithm that performs 2.5D QR using the YT
representation

I The algorithm performs left-looking updates on Y

I Householder with YT needs fewer computation (roughly 2x)
than Givens rotations
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Matrix factorizations and the symmetric eigenproblem

3D QR using YT representation
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Matrix factorizations and the symmetric eigenproblem

Latency-optimal 2.5D QR

To reduce latency, we can employ the TSQR algorithm

1. Given n-by-b panel partition into 2b-by-b blocks

2. Perform QR on each 2b-by-b block

3. Stack computed Rs into n/2-by-b panel and recursive

4. Q given in hierarchical representation

Need YT representation from hierarchical Q...

Edgar Solomonik Cyclops Tensor Framework 77/ 44



Matrix factorizations and the symmetric eigenproblem

YT reconstruction

Yamamoto et al.

I Take Y to be the first b columns of Q minus the identity

I Define T = (I − Q1)−1

I Sacrifices triangular structure of T and Y .

Our first attempt

LU(R−A) = LU(R−(I−YTY T )R) = LU(YTY TR) = (Y )·(TY TR)

was unstable due to being dependent on the condition number of
R. However, performing LU on Yamamoto’s T seems to be stable,

LU(I−Q1) = LU(I−(I−Y1TY
T
1 )) = LU(Y1TY

T
1 ) = (Y1)·(TY T

1 )

and should yield triangular Y and T .
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Matrix factorizations and the symmetric eigenproblem

3D algorithms on BG/Q
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Matrix factorizations and the symmetric eigenproblem

3D algorithms for DFT

3D matrix multiplication is integrated into QBox.

I QBox is a DFT code developed by Erik Draeger et al.

I Depending on system/functional can spend as much as 80%
time in MM

I Running on most of Sequoia and getting significant speed up
from 3D

I 1.75X speed-up on 8192 nodes 1792 gold atoms, 31
electrons/atom

I Eventually hope to build and integrate a 3D eigensolver into
QBox
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