Algorithms as Multilinear Tensor Equations

Edgar Solomonik

Department of Computer Science ETH Zurich

University of Toronto

March 15, 2016

Pervasive paradigms in scientific computing

What commonalities exist in simulation and data analysis applications?

- multidimensional datasets (observations, discretizations)
- higher-order relations: equations, maps, graphs, hypergraphs
- sparsity and symmetry in structure of relations
- algebraic descriptions of datasets and relations

Tensor computations as programming abstractions

Tensors (scalars, vectors, matrices, etc.) are convenient abstractions for multidimensional data

- one type of object for any homogeneous dataset
- enable expression of symmetries
- reveal sparsity structure of relations in multidimensional space

Matrix computations ⊂ tensor computations

- = often reduce to or employ matrix algorithms
 - can leverage high performance matrix libraries
- + high-order tensors can 'act' as many matrix unfoldings
- + symmetries lower memory footprint and cost
- + tensor factorizations (CP, Tucker, tensor train, ...)

What is the power of a parallel tensor library?

The ability to **optimally** orchestrate

- algebraic transformations
- data movement
- synchronization

for a universal class of algebraic computations

Applications of high-order tensor representations

Numerical solution to differential equations

- higher-order Taylor series expansion terms
- nonlinear terms and differential operators

Computer vision and graphics

- ullet 2D image \otimes angle \otimes time
- compression (tensor factorizations, sparsity)

Machine learning

- sparse multi-feature discrete datasets
- reduced-order models, recommendation systems (tensor factorizations)

Graph computations

- hypergraphs, time-dependent graphs
- clustering/partitioning/path-finding (eigenvector computations)

Divide-and-conquer algorithms representable by tensor folding

bitonic sort, FFT, scans

Applications to quantum systems

Manybody Schrödinger equation

"curse of dimensionality" – exponential state space

Condensed matter physics

- tensor network models (e.g. DMRG), tensor per lattice site
- highly symmetric multilinear tensor representation
- ullet exponential state space localized o factorized tensor form

Quantum chemistry (electronic structure calculations)

- models of molecular structure and chemical reactions
- methods for calculating electronic correlation:
 - "Post Hartree-Fock": configuration interaction, coupled cluster, Møller-Plesset perturbation theory
- multi-electron states as tensors,
 e.g. electron ⊗ electron ⊗ orbital ⊗ orbital
- nonlinear equations of partially (anti)symmetric tensors
- ullet interactions diminish with distance o sparsity, low rank

Outline and highlights

- Massively-parallel electronic structure calculations
 - Cyclops Tensor Framework (CTF): first distributed-memory tensor contraction framework
 - codes using CTF for wavefunction methods: Aquarius, QChem, VASP, Psi4
 - ullet coupled cluster faster than NWChem by > 10X, nearly 1 petaflop/s
- Sparse and discrete tensor computations
 - CTF supports arbitrary sparse multidimensional arrays
 - sparsity used to accelerate algebraic all-pairs shortest-paths
- Ommunication-optimal algorithms for linear solvers
 - novel tradeoffs: synchronization vs communication in Cholesky and stencils
 - \bullet algorithms with $p^{1/6}$ less communication on p processors for LU, QR, eigs
 - topology-aware implementations: 12X speed-up for MM, 2X for LU
- Preserving symmetry in tensor contractions
 - contraction of order 2s symmetric tensors in $\frac{(3s)!}{(s!)^3}$ fewer multiplies
 - up to 9X speed-up for partially-symmetric contractions in coupled cluster

Coupled cluster methods

Coupled cluster provides a systematically improvable approximation to the manybody time-independent Schrödinger equation $H|\Psi\rangle=E|\Psi\rangle$

- ullet the Hamiltonian has one- and two- electron components H=F+V
- Hartree-Fock (SCF) computes mean-field Hamiltonian: F, V
- Coupled-cluster methods (CCSD, CCSDT, CCSDTQ) consider transitions of (doubles, triples, and quadruples) of electrons to unoccupied orbitals, encoded by tensor operator,

$$T = T_1 + T_2 + T_3 + T_4$$

- they use an exponential ansatz for the wavefunction, $\Psi = e^T \phi$ where ϕ is a Slater determinant
- expanding $0 = \langle \phi' | H | \Psi \rangle$ yields nonlinear equations for $\{T_i\}$ in F, V

$$0 = V_{ij}^{ab} + \mathcal{P}(a,b) \sum_{e} T_{ij}^{ae} F_e^b - \frac{1}{2} \mathcal{P}(i,j) \sum_{mnef} T_{im}^{ab} V_{ef}^{mn} T_{jn}^{ef} + \dots$$

where \mathcal{P} is an antisymmetrization operator

A library for tensor computations

Cyclops Tensor Framework¹

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

¹S., Hammond, Demmel, UCB, 2011. S., Matthews, Hammond, Demmel, IPDPS, 2013

A library for tensor computations

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

Jacobi iteration (solves Ax = b iteratively) example code snippet

A library for tensor computations

Cyclops Tensor Framework

- contraction/summation/functions of tensors
- distributed symmetric-packed/sparse storage via cyclic layout
- parallelization via MPI+OpenMP(+CUDA)

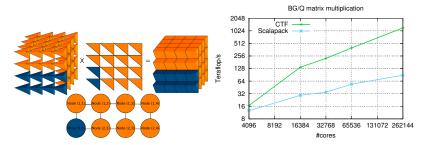
```
Jacobi iteration (solves Ax = b iteratively) example code snippet
```

```
Vector<> Jacobi(Matrix<> A, Vector<> b, int n){
   Matrix<> R(A);
   R["ii"] = 0.0;
   Vector<> x(n), d(n), r(n);
   Function<> inv([](double & d){ return 1./d; });
   d["i"] = inv(A["ii"]); // set d to inverse of diagonal of A
   do {
      x["i"] = d["i"]*(b["i"]-R["ij"]*x["j"]);
      r["i"] = b["i"]-A["ij"]*x["j"]; // compute residual
   } while (r.norm2() > 1.E-6); // check for convergence
   return x;
}
```

Performance of CTF for dense computations

CTF is highly tuned for massively-parallel machines

- virtualized multidimensional processor grids
- topology-aware mapping and collective communication
- performance-model-driven decomposition done at runtime
- optimized redistribution kernels for tensor transposition



CCSD using CTF

Extracted from Aquarius (Devin Matthews' code, https://github.com/devinamatthews/aquarius)

```
FMI["mi"] += 0.5*WMNEF["mnef"]*T2["efin"];
WMNIJ["mnij"] += 0.5*WMNEF["mnef"]*T2["efij"];
FAE["ae"] -= 0.5*WMNEF["mnef"]*T2["afmn"];
WAMEI["amei"] -= 0.5*WMNEF["mnef"]*T2["afin"];

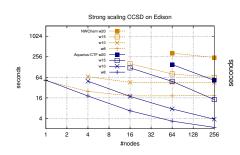
Z2["abij"] = WMNEF["ijab"];
Z2["abij"] += FAE["af"]*T2["fbij"];
Z2["abij"] -= FMI["ni"]*T2["abnj"];
Z2["abij"] += 0.5*WABEF["abef"]*T2["efij"];
Z2["abij"] += 0.5*WMNIJ["mnij"]*T2["abmn"];
Z2["abij"] -= WAMEI["amei"]*T2["ebmj"];
```

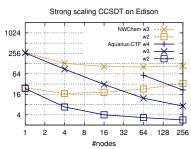
CTF is used within Aquarius, QChem, VASP, and Psi4

Comparison with NWChem

NWChem is the most commonly-used distributed-memory quantum chemistry method suite

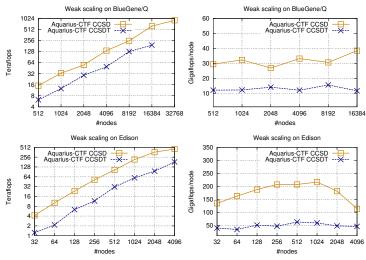
- provides CCSD and CCSDT
- derives equations via Tensor Contraction Engine (TCE)
- generates contractions as blocked loops leveraging Global Arrays





Coupled cluster on IBM BlueGene/Q and Cray XC30

CCSD up to 55 (50) water molecules with cc-pVDZ CCSDT up to 10 water molecules with $cc-pVDZ^a$



^aS., Matthews, Hammond, Demmel, JPDC, 2014

Sparsity in electronic structure computations

Møller-Plesset perturbation theory (MP3) code snippet

```
Z["abij"] += Fab["af"]*T["fbij"];
Z["abij"] -= Fij["ni"]*T["abnj"];
Z["abij"] += 0.5*Vabcd["abef"]*T["efij"];
Z["abij"] += 0.5*Vijkl["mnij"]*T["abmn"];
Z["abij"] -= Vaibj["amei"]*T["ebmj"];
```

Consider sparse two-electron integrals: Vabcd, Vijkl, Vaibj

Algebraic shortest path computations

Tropical (geodetic) semiring

- additive (idempotent) operator: $a \oplus b := \min(a, b)$, identity: ∞
- multiplicative operator: $a \otimes b := a + b$, identity: 0
- matrix multiplication defined accordingly,

$$C = A \otimes B := \forall i, j, C_{ij} = \min_{k} (A_{ik} + B_{kj})$$

Bellman-Ford algorithm (SSSP) for $n \times n$ adjacency matrix A:

- initialize $v^{(1)} = (0, \infty, \infty, \ldots)$
- 2 compute $v^{(n)}$ via recurrence

$$v^{(i+1)} = v^{(i)} \oplus (v^{(i)} \otimes A)$$

Algebraic shortest path computations

All-pairs shortest-paths (APSP):

• distance matrix is the closure of A,

$$A^* = I \oplus A \oplus A^2 \oplus \dots A^n$$

- ullet Floyd–Warshall = Gauss–Jordan elimination pprox Gaussian elimination
 - $O(n^3)$ cost, but contains length $n \log n$ dependency path²
- path doubling: $\log n$ steps, $O(n^3 \log n)$ cost:

$$B = I \oplus A$$
, $B^{2k} = B^k \otimes B^k$, $B^n = A^*$

- sparse path doubling³:
 - let C be subset of B^k corresponding to paths containing exactly k edges,

$$B^{2k} = B^k \oplus (C \otimes B^k)$$

• $O(n^3)$ cost, dependency paths length $O(\log^2 n)$

²S., Buluc, Demmel, IPDPS, 2013

³Tiskin, Springer LNCS, 2001

Bellman-Ford Algorithm using CTF

CTF code for n node single-source shortest-paths (SSSP) calculation:

```
World w(MPI_COMM_WORLD);
Semiring < int > s(INT_MAX/2,
                [](int a, int b){ return min(a,b); },
                MPI_MIN,
                0.
                [](int a, int b){ return a+b; });
Matrix<int> A(n,n,SP,w,s); // Adjacency matrix
Vector<int> v(n,w,s); // Distances from starting vertex
... // Initialize A and v
//Bellman-Ford SSSP algorithm
for (int t=0; t< n; t++){
  v["i"] += v["j"]*A["ji"];
}
```

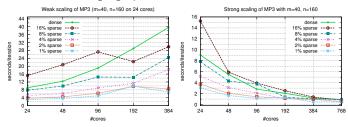
Betweenness centrality

Betweenness centrality code snippet, for k of n nodes

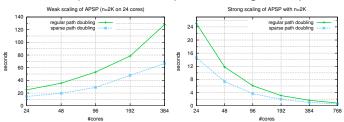
```
void btwn_central(Matrix<int> A, Matrix<path> P, int n, int k){
  Monoid < path > mon(...,
                   [](path a, path b){
                      if (a.w<b.w) return a;
                     else if (b.w<a.w) return b;
                     else return path(a.w, a.m+b.m);
                   }, ...);
  Matrix < path > Q(n,k,mon); // shortest path matrix
  Q["ij"] = P["ij"];
  Function<int,path> append([](int w, path p){
                        return path(w+p.w, p.m);
                     }; );
  for (int i=0; i<n; i++)
   Q["ij"] = append(A["ik"],Q["kj"]);
```

Performance of CTF for sparse computations

MP3 leveraging sparse-dense tensor contractions^a



All-pairs shortest-paths based on path doubling with sparsification^a



^aS., Hoefler, Demmel, arXiv, 2015

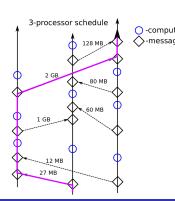
Cost model for parallel algorithms

Algorithms should minimize communication, not just computation

• data movement and synchronization cost more energy than flops

Given a schedule consider the following costs, accumulated along chains of tasks (as in $\alpha - \beta$, BSP, and LogGP models):

- F computation cost
- Q vertical communication cost
- W horizontal communication cost
- S synchronization cost



Communication lower bounds: previous work

Multiplication of $n \times n$ matrices

horizontal communication lower bound⁴

$$W_{\mathsf{MM}} = \Omega\left(\frac{n^2}{p^{2/3}}\right)$$

memory-dependent horizontal communication lower bound⁵

$$W_{\mathsf{MM}} = \Omega\left(\frac{n^3}{\rho\sqrt{M}}\right)$$

• with $M = cn^2/p$ memory, hope to obtain communication cost

$$W = O(n^2/\sqrt{cp})$$

• libraries like ScaLAPACK, Elemental optimal only for c=1

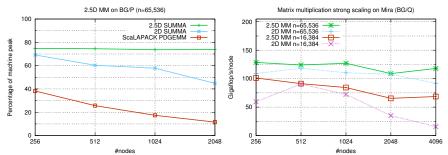
⁴ Aggarwal, Chandra, Snir, TCS, 1990

⁵Irony, Toledo, Tiskin, JPDC, 2004

Communication-efficient matrix multiplication

Communication-avoiding algorithms for matrix multiplication have been studied extensively 6

They continue to be attractive on modern architectures⁷



12X speed-up, 95% reduction in comm. for $n=8\mathrm{K}$ on 16K nodes of BG/P

⁶ Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995; McColl, Tiskin, Algorithmica, 1999; ...

⁷S., Bhatele, Demmel, SC, 2011

Synchronization cost lower bounds

Unlike matrix multiplication, many algorithms in numerical linear algebra have polynomial depth (contain a long dependency path)

• matrix multiplication synchronization cost bound⁸

$$S_{\mathsf{MM}} = \Theta\left(\frac{n^3}{pM^{3/2}}\right)$$

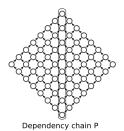
- algorithms for Cholesky, LU, QR, SVD do not attain this bound
- low granularity computation increases synchronization cost

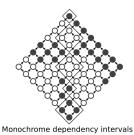
Ballard, Demmel, Holtz, Schwartz, SIAM JMAA, 2011

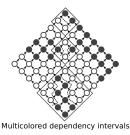
Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,⁹

$$F \cdot S = \Omega(n^2)$$







We generalize this idea¹⁰

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

Papadimitriou, Ullman, SIAM JC, 1987

 $^{^{10}\}mathrm{S.}$, Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:^a

For triangular solve with an $n \times n$ matrix,

$$F_{\text{TRSV}} \cdot S_{\text{TRSV}} = \Omega \left(n^2 \right)$$

For Cholesky of an $n \times n$ matrix,

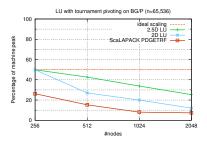
$$F_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}}^2 = \Omega\left(n^3\right) \qquad W_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}} = \Omega\left(n^2\right)$$

^aS., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Communication-efficient LU factorization

For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{\text{LU}} = O(n^2/\sqrt{cp}), \qquad S_{\text{LU}} = O(\sqrt{cp})$$



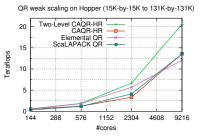
- LU with pairwise pivoting 11 extended to tournament pivoting 12
- first implementation of a communication-optimal LU algorithm¹²

¹¹Tiskin, FGCS, 2007

¹² S., Demmel, Euro-Par, 2011

Communication-efficient QR factorization

- $W_{\rm QR} = O(n^2/\sqrt{cp}), S_{\rm QR} = O(\sqrt{cp})$ using Givens rotations^a
- Householder form can be reconstructed quickly from TSQR^b $Q = I YTY^{T} \Rightarrow LU(I Q) \rightarrow (Y, TY^{T})$
- enables communication-optimal Householder QR^c
- Householder aggregation yields performance improvements



Further directions: 2.5D QR implementation, lower bounds, pivoting

^aTiskin, FGCS, 2007

^bBallard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

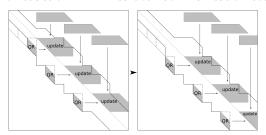
^cS.. UCB, 2014

Communication-efficient eigenvalue computation

For the dense symmetric matrix eigenvalue problem^a

$$W_{\text{SE}} = O(n^2/\sqrt{cp}), S_{\text{QR}} = O(\sqrt{cp}\log^2 p)$$

- above costs obtained by left-looking algorithm with Householder aggregation, however, with increased vertical communication
- successive band reduction minimizes both communication costs



Further directions: implementations (ongoing), eigenvector computation, SVD

^aS., UCB, 2014. S., Hoefler, Demmel, in preparation

Synchronization tradeoffs in stencils

Our lower bound analysis extends to sparse iterative methods:¹³ For computing s applications of a $(2m+1)^d$ -point stencil,

$$F_{\mathsf{St}} \cdot S^d_{\mathsf{St}} = \Omega\left(m^{2d} \cdot s^{d+1}\right), \qquad W_{\mathsf{St}} \cdot S^{d-1}_{\mathsf{St}} = \Omega\left(m^d \cdot s^d\right)$$

- time-blocking lowers synchronization and vertical communication costs, but raises horizontal communication
- we suggest alternative approach that minimizes vertical and horizontal communication, but not synchronization
- further directions:
 - implementation of proposed algorithm
 - lower bounds for graph traversals

¹³S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Symmetry preserving algorithms

Tensor symmetry (e.g. $A_{ij} = A_{ji}$) reduces memory and cost¹⁴

- for order *d* tensor, *d*! less memory
- matrix-vector multiplication $(A_{ij} = A_{ji})^1$

$$c_i = \sum_j A_{ij}b_j = \sum_j A_{ij}(b_i + b_j) - \left(\sum_j A_{ij}\right)b_i$$

- $A_{ij}b_j \neq A_{ji}b_i$ but $A_{ij}(b_i + b_j) = A_{ji}(b_j + b_i) \rightarrow (1/2)n^2$ multiplies
- ullet for symmetrized contraction of symmetric order s+v and v+t tensors

$$\frac{(s+t+v)!}{s!t!v!}$$
 fewer multiplies

- lower overall cost for partially symmetric contractions
- up to 9X for select contractions, 1.3X/2.1X for CCSD/CCSDT
- Hermitian BLAS/LAPACK operations with 25% less cost
- Ongoing: relationship to fast structured matrix multiplication

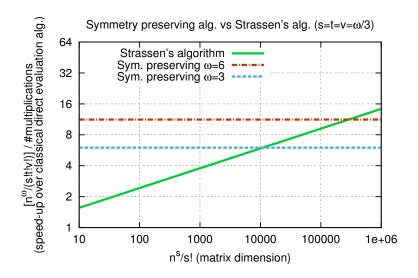
¹⁴S., Demmel; Technical Report, ETH Zurich, 2015.

Impact and future work

- Cyclops Tensor Framework
 - already widely-adapted in quantum chemistry, many requests for features
 - \bullet study algorithms for tensor expressions \to factorization, scheduling, ...
 - engage new application domains (via sparsity and algebraic structures)
 - tensor networks for condensed matter-physics, particle methods
 - graph algorithms, discrete data analysis
 - graphics, computer vision, machine learning
- communication-avoiding algorithms
 - existing fast implementations already used by applications (e.g. QBox)
 - find efficient methods of searching larger tuning spaces
 - algorithms for computing eigenvectors, SVD, tensor factorizations
 - study (randomized) algorithms for sparse matrix factorization
- symmetry in tensor computations
 - ullet cost improvements o fast library implementations o application speed-ups
 - study symmetries in tensor equations and factorizations
 - consider other symmetries and relation to fast matrix multiplication

Backup slides

Symmetry preserving algorithm vs Strassen's algorithm



Nesting of bilinear algorithms

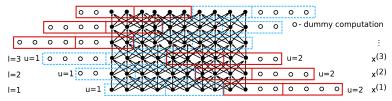
Given two bilinear algorithms:

$$\Lambda_1 = (F_1^{(A)}, F_1^{(B)}, F_1^{(C)})$$
$$\Lambda_2 = (F_2^{(A)}, F_2^{(B)}, F_2^{(C)})$$

We can nest them by computing their tensor product

$$\begin{split} & \Lambda_1 \otimes \Lambda_2 \coloneqq & (\textbf{F}_1^{(\textbf{A})} \otimes \textbf{F}_2^{(\textbf{A})}, \textbf{F}_1^{(\textbf{B})} \otimes \textbf{F}_2^{(\textbf{B})}, \textbf{F}_1^{(\textbf{C})} \otimes \textbf{F}_2^{(\textbf{C})}) \\ & \text{rank}(\Lambda_1 \otimes \Lambda_2) = & \text{rank}(\Lambda_1) \cdot \text{rank}(\Lambda_2) \end{split}$$

Block-cyclic algorithm for s-step methods

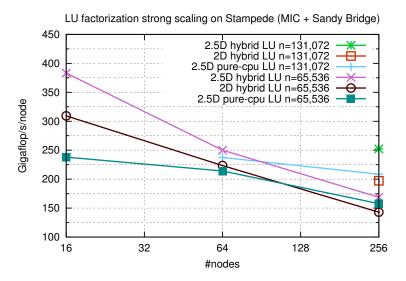


For s-steps of a $(2m+1)^d$ -point stencil with block-size of $H^{1/d}/m$,

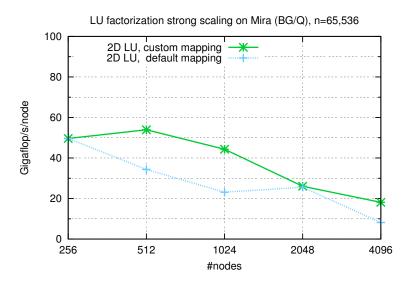
$$W_{
m Kr} = O\left(rac{msn^d}{H^{1/d}p}
ight) \quad S_{
m Kr} = O(sn^d/(pH)) \quad Q_{
m Kr} = O\left(rac{msn^d}{H^{1/d}p}
ight)$$

which are good when $H=\Theta(n^d/p)$, so the algorithm is useful when the cache size is a bit smaller than n^d/p

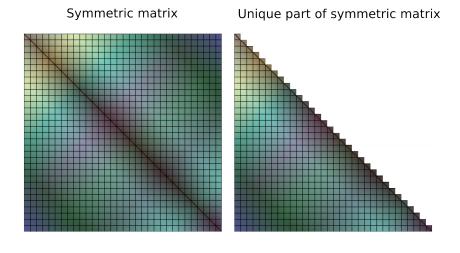
2.5D LU on MIC



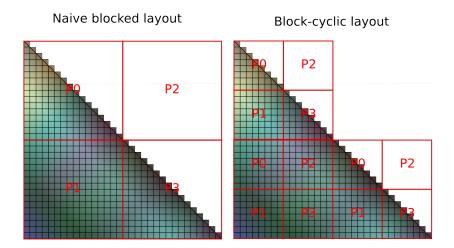
Topology-aware mapping on BG/Q



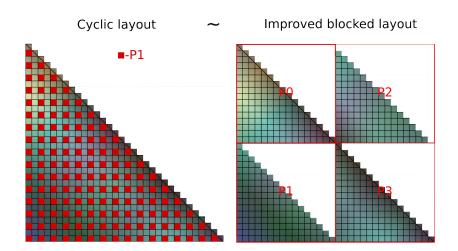
Symmetric matrix representation



Blocked distributions of a symmetric matrix



Cyclic distribution of a symmetric matrix



Our CCSD factorization

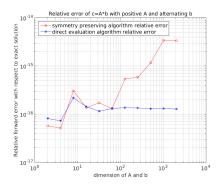
Credit to John F. Stanton and Jurgen Gauss

$$\begin{split} \tau^{ab}_{ij} &= t^{ab}_{ij} + \frac{1}{2} P^{a}_{b} P^{i}_{j} t^{a}_{i} t^{b}_{j}, \\ \tilde{F}^{m}_{e} &= f^{m}_{e} + \sum_{fn} v^{mn}_{ef} t^{f}_{n}, \\ \tilde{F}^{a}_{e} &= (1 - \delta_{ae}) f^{a}_{e} - \sum_{m} \tilde{F}^{m}_{e} t^{a}_{m} - \frac{1}{2} \sum_{mnf} v^{mn}_{ef} t^{af}_{mn} + \sum_{fn} v^{an}_{ef} t^{f}_{n}, \\ \tilde{F}^{m}_{i} &= (1 - \delta_{mi}) f^{m}_{i} + \sum_{e} \tilde{F}^{m}_{e} t^{e}_{i} + \frac{1}{2} \sum_{nef} v^{mn}_{ef} t^{ef}_{in} + \sum_{fn} v^{mn}_{if} t^{f}_{n}, \end{split}$$

Our CCSD factorization

$$\begin{split} \tilde{W}_{ei}^{mn} &= v_{ei}^{mn} + \sum_{f} v_{ef}^{mn} t_{i}^{f}, \\ \tilde{W}_{ij}^{mn} &= v_{ij}^{mn} + P_{j}^{i} \sum_{e} v_{ie}^{mn} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{mn} \tau_{ij}^{ef}, \\ \tilde{W}_{ie}^{am} &= v_{ie}^{am} - \sum_{n} \tilde{W}_{ei}^{mn} t_{n}^{a} + \sum_{f} v_{ef}^{ma} t_{i}^{f} + \frac{1}{2} \sum_{nf} v_{ef}^{mn} t_{in}^{af}, \\ \tilde{W}_{ij}^{am} &= v_{ij}^{am} + P_{j}^{i} \sum_{e} v_{ie}^{am} t_{j}^{e} + \frac{1}{2} \sum_{ef} v_{ef}^{am} \tau_{ij}^{ef}, \\ z_{i}^{a} &= f_{i}^{a} - \sum_{m} \tilde{F}_{i}^{m} t_{m}^{a} + \sum_{e} f_{e}^{a} t_{i}^{e} + \sum_{em} v_{ei}^{ma} t_{m}^{e} + \sum_{em} v_{im}^{ae} \tilde{F}_{e}^{m} + \frac{1}{2} \sum_{efm} v_{ef}^{am} \tau_{im}^{ef} \\ &- \frac{1}{2} \sum_{emn} \tilde{W}_{ei}^{mn} t_{mn}^{ea}, \\ z_{ij}^{ab} &= v_{ij}^{ab} + P_{j}^{i} \sum_{e} v_{ie}^{ab} t_{j}^{e} + P_{b}^{a} P_{j}^{i} \sum_{me} \tilde{W}_{ie}^{am} t_{mj}^{eb} - P_{b}^{a} \sum_{m} \tilde{W}_{ij}^{am} \tau_{mn}^{ab}, \\ &+ P_{b}^{a} \sum_{n} \tilde{F}_{e}^{a} t_{ij}^{eb} - P_{j}^{i} \sum_{m} \tilde{F}_{i}^{m} t_{mj}^{ab} + \frac{1}{2} \sum_{ef} v_{ef}^{ab} \tau_{ij}^{ef} + \frac{1}{2} \sum_{mn} \tilde{W}_{ij}^{mn} \tau_{mn}^{ab}, \end{split}$$

Stability of symmetry preserving algorithms





Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and 1000 orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins *v*-orbitals, *o*-electrons

kernel	% of time	complexity	architectural bounds
DGEMM	45%	$O(v^4o^2/p)$	flops/mem bandwidth
broadcasts	20%	$O(v^4o^2/p\sqrt{M})$	multicast bandwidth
prefix sum	10%	O(p)	allreduce bandwidth
data packing	7%	$O(v^2o^2/p)$	integer ops
all-to-all-v	7%	$O(v^2o^2/p)$	bisection bandwidth
tensor folding	4%	$O(v^2o^2/p)$	memory bandwidth

Tiskin's path doubling algorithm

Tiskin gives a way to do path-doubling in $F = O(n^3/p)$ operations. We can partition each \mathbf{A}^k by path size (number of edges)

$$\mathbf{A}^k = \mathbf{I} \oplus \mathbf{A}^k(1) \oplus \mathbf{A}^k(2) \oplus \ldots \oplus \mathbf{A}^k(k)$$

where each $\mathbf{A}^k(I)$ contains the shortest paths of up to $k \geq I$ edges, which have exactly I edges. We can see that

$$\mathbf{A}^{l}(l) \leq \mathbf{A}^{l+1}(l) \leq \ldots \leq \mathbf{A}^{n}(l) = \mathbf{A}^{*}(l),$$

in particular $\mathbf{A}^*(I)$ corresponds to a sparse subset of $\mathbf{A}^I(I)$. The algorithm works by picking $I \in [k/2, k]$ and computing

$$(\mathbf{I} \oplus \mathbf{A})^{3k/2} \leq (\mathbf{I} \oplus \mathbf{A}^k(I)) \otimes \mathbf{A}^k,$$

which finds all paths of size up to 3k/2 by taking all paths of size exactly $l \ge k/2$ followed by all paths of size up to k.