
CS 554 / CSE 512: Parallel Numerical Algorithms
Lecture Notes

Chapter 2: Parallel Thinking

Michael T. Heath and Edgar Solomonik
Department of Computer Science

University of Illinois at Urbana-Champaign

November 10, 2017

1 Design

A common partition/communicate/agglomerate/map methodology is effective for parallelization of many
numerical and data-intensive algorithms [17]. We develop this methodology in general and provide a few
typical examples. A model of the cost and execution time of these algorithms is then derived using the
communication and execution models from the previous chapter. These models provide a lens for analyzing
the quality of the parallelizations in terms of efficiency, a notion we develop rigorously in the latter part of
this chapter. Note, however, that the design methodology introduced in this section provides a method of
parallelizing algorithms. However, for a given problem some computationally efficient algorithms may be
inherently sequential or simply less parallelizable than alternatives. In this sense, parallelization is only a
part of the overall design process of finding the best parallel numerical algorithm for a given problem [3].

1.1 Parallelization Methodology

A natural way to design parallel algorithms from a given sequential computation/algorithm is to subdivide
the computation into minimal chunks (tasks), then consider dependencies among them. We can then con-
sider assigning each chunk to a unique processor, treating the dependencies as communication channels.
This way of thinking stems from the PRAM model, which aims to exploit the maximum amount of con-
currency available in the algorithm, often resulting in the assignment of each processor to very fine-grained
parts of the computation. However, in general, the number of processors may be much smaller than the
number of computational operations. The mapping of the operations onto processors and (to a lesser extent)
the mapping of communication channels onto the network affects the efficiency and scalability of parallel
algorithms.

We first define the decomposition more precisely, using the following notions:

• Task – a subset of the overall algorithm, with a set of inputs and outputs,

• Communication channel – connection between two tasks over which information is passed (mes-
sages are sent and received).

In some cases, tasks will correspond to a set of computations that is executed atomically (once all inputs are
received, the task is processed and computes all outputs). However, in regular iterative algorithms, it can
be convenient to think of tasks as being persistent (receiving inputs and computing outputs multiple times),

1

so that the parallelization makes repeated use of the same communication channels. Rather than map fine-
grained tasks to processors, we first aggregate them into coarser-grain tasks, so as to consider locality, task
dependencies, and communication channels at a more abstract level. Finally, we map these agglomerated
tasks onto processors, while trying to enable as much concurrency of execution as possible among the
processors and minimizing the communication between them.

The overall parallel algorithm design methodology has four steps (demonstrated in Figure 1):

• Partition – decompose problem into fine-grain tasks, maximizing number of tasks that can execute
concurrently,

• Communicate – determine communication pattern among fine-grain tasks, yielding dependency
graph with fine-grain tasks as nodes and communication channels as edges,

• Agglomerate – combine groups of fine-grain tasks to form fewer but larger coarse-grain tasks, thereby
reducing communication requirements,

• Map – assign coarse-grain tasks to processors, subject to tradeoffs between communication costs and
concurrency.

Problem

Partition Co
mm
un
ica
te Agglom
erate M

ap

Figure 1: Illustration of the proposed parallel algorithm design methodology.

Our design methodology can be interpreted in terms of graph embeddings:

• the partitioning step defines the nodes of the task graph,

• the communicate step defines the edges of the task graph,

• the agglomeration step coarsens the task graph, embedding it in a smaller virtual network graph,

• the map step embeds the coarser task (virtual network) graph onto the physical network graph.

When ignoring network topology, we can think of the map step as embedding the coarse grain task graph
onto a fully-connected graph. Some system-level abstractions (e.g., the Charm++ programming frame-
work [15]) automate the map step, requiring the user only to define the coarse grain tasks and their data
interchanges.

2

1.1.1 Partitioning

The partitioning step most commonly involes a data-driven decomposition of the algorithm, although there
are other important sources of concurrent tasks. The following are common partitioning strategies:

• domain partitioning – subdivide geometric domain into subdomains [6, 25],

• functional decomposition – subdivide algorithm into multiple logical components [7, 8],

• independent tasks – subdivide computation into tasks that do not depend on each other, i.e., partition
embarrassingly parallel parts of the algorithm [20],

• array parallelism – subdivide data stored in vectors, matrices, or other arrays [1, 2, 12, 13, 21, 23],

• divide-and-conquer – subdivide problem recursively into tree-like hierarchy of subproblems [4],

• pipelining – subdivide sequences of tasks performed by the algorithm on each piece of data [11, 27,
30].

With all or a mix of these partitioning strategies, a general goal is to maximize the potential for concurrent
execution and to maintain load balance, i.e., ensure the tasks are roughly uniform in size. Generally, it is
also desirable that the tasks remain of constant size as we increase the problem size. For instance, if we can
partition a cube n× n× n domain with three strategies (displayed in Figure 2 with k = n/2)

• define tasks corresponding to partitions of size n× n× k,

• define tasks corresponding to partitions of size n× k × k,

• define tasks corresponding to partitions of size k × k × k.

If we consider larger cubes (increase the problem size by increasing n), the tasks defined by the first two
partitioning strategies grow in size. However, the last strategy maintains a fixed task size for a fixed k. While
the number of such fine-grained tasks may grow with the problem size, we can always agglomerate them as
appropriate, and the third strategy gives us the most flexibility in doing so.

Figure 2: Three partitioning strategies for a computation with a cubic geometric structure.

1.1.2 Agglomeration

Agglomeration is generally done with account for the specifics of the communication pattern defined by
the fine-grained task graph. In particular, agglomeration should leverage locality in the communication
pattern. Generally, the communication is local if, for some geometric arrangement of tasks, only nearby
tasks establish communication channels among each other.

3

Agglomeration is easiest to do statically if the communication pattern is conveniently structured, but in
some cases it can be unstructured (although potentially still local) or dynamically changing, rather than per-
sistent. In these cases, the agglomeration may need to be done dynamically rather than statically. However,
in many scenarios dynamic agglomeration may require partitioning a very large graph, in which cases static,
albeit possibly imperfect agglomeration can be preferrable.

1.1.3 Mapping

As with agglomeration, mapping of coarse-grain tasks to processors should maximize concurrency, mini-
mize communication, and maintain good load balance. Often different mappings involve trade-offs between
these goals. Taking into account the interconnect topology makes mapping substantially more challenging.
While the connectivity of coarse-grain task graph is inherited from that of fine-grain task graph, whereas
connectivity of target interconnection network is independent of problem. Communication channels be-
tween tasks may or may not correspond to physical connections in underlying interconnection network
between processors.

As a simple demonstration of the trade-offs involved in mapping agglomerated tasks onto processors,
consider two persistent tasks, that interchange information and executed chunks of work independently.
These two communicating tasks can be assigned to

• one processor, avoiding interprocessor communication but sacrificing concurrency,

• two adjacent processors, so communication between the tasks is directly supported, or

• two nonadjacent processors, so message routing is required.

When taking into account the interconnecition netwrok (distinguishing the latter two choices), making these
choices optimally for an arbitrary number of processors in NP-complete [22], as subgraph isomorphism is
a special case of the problem [5]. However, much like we saw with agglomeration, for many problems, the
task graph has regular structure that can make static mappings possible and efficient. If communication is
mainly global, then communication performance may not be sensitive to placement of tasks on processors,
which can make random mappings attractive. In particular, if the communication pattern is very irregular
and nonuniform, randomization serves to balance the communication traffic experienced by any processor
or network link, avoiding network contention [26].

A few static mapping strategies are particularly prevalent in parallel numerical algorithms. Consider n
tasks and p processors consecutively numbered in some ordering. The following regular mappings types
often serve to exploit locality (reduce communication) while maintaining concurrency (see also Figure 3):

• block mapping – blocks of n/p consecutive tasks are assigned to successive processors,

• cyclic mapping – task i is assigned to processor i mod p,

• reflection mapping – like cyclic mapping except tasks are assigned in reverse order on alternate
passes,

• random – tasks are permuted at random then assigned in a block mapping, so that they are partitioned
evenly among processors (n/p each).

By combination of agglomeration and mapping we can derive combinations of these mapping strategies,

• block-cyclic mapping – blocks of tasks assigned to processors cyclically.

• block-reflection mapping – blocks of tasks assigned in reverse orders in different blocks.

4

151412 1311108 9764 5320 1

15113 714102 61391 51280 4

12113 413102 51491 61580 7

15146 713124 511102 3980 1

cyclic

block

reflection

block-cyclic

Figure 3: Illustration of a few common static mapping strategies.

Block-cyclic mappings will be of interest as they can present the distribution with a control mechanism
(block-size adjustment) between locality and load-balance.

These mappings generalize naturally to multidimensional grids of tasks, when mapping to multidimen-
sional mesh of processors. In particular, Figure 4 demonstrate the cyclic, blocked, and block-cyclic map-
pings of a matrix onto a 2-by-2 mesh of processors. Cyclicity (cyclic and block-cyclic mappings) will be
used in parallel matrix-based algorithms to achieve better load balance and concurrency within algorithms
that operate on successive panels of the matrix [2, 24].

(a) Blocked Matrix Mapping (b) Cyclic Matrix Mapping (c) Block-Cyclic Matrix Mapping

Figure 4: Illustration of a few common static mapping strategies in 2-dimensions.

The mapping strategies above are used statically to determine data distributions that are typically main-
tained for a fixed portion or entirety of a computation. In contrast to these, dynamic mapping strategies, are
typically associated with load balancing the assignment of tasks to processors periodically. Dynamic map-
ping (load-balancing) is often benficial when the load of each tasks is variable throughout the computation.
However, rebalancing tasks is typically associated with a reditribution of data that can outweigh the benefit
of the improvement in the subsequent load balance. Dynamic load balancing strategies that exploit locality,
such as hierarchical load balancers, can limit the cost of computation [32]. In some cases, measurement-
driven dynamic strategies decide between global rebalancing methods and minimal perturbative rebalancing
methods [33].

2 Cost Analysis

The costs of a parallel algorithm correspond to a quantification of its complexity of usage of different
hardware resources. To understand the scalability and model execution time of different parallel algorithms

5

we need to quantify the degree to how well the parallel algorithms fare in

• load balance – evenness of distribution of overall work among processors,

• concurrency – ability of processors to perform work simultaneously,

• overhead – additional work and communication [16].

Figure 5 provides visual examples of how these effects influence execution time.

(a) (b) (c) (d)

Figure 5: Assignments of tasks to 4 processors demonstrating (a) perfect load balance and concurrency, (b)
good initial concurrency but poor load balance, (c) good load balance but poor concurrency, (d) good load
balance and concurrency but additional overhead.

For distributed-memory algorithms a critical limiting feature is their memory footprint. We generally
associate this quantity with the input/output size for sequential exeucution, while being potentially greater
within a parallel algorithm.

• input/output size – M1 – minimal memory footprint of the problem in words (typically maximum of
input and output size),

• memory footprint – Mp – overall memory footprint of parallel algorithm on p processors in words.

We focus on the following To reason about computational cost, load balance, and concurrency, we quantify
the total number of operations and the longest inherently sequential subsection:

• sequential work – Q1(M1) – number of operations performed by reference sequential algorithm,

• work – Qp(M1) – overall number of operations done by of parallel algorithm on p processors,

• depth – D(M1) – longest sequence of dependent computational operations in algorithms.

These are expressed as functions of M1 as we are most interested in their dependence on the input/output
size of the algorithm (Mp could also be parameterized as Mp(M1)).

Work and depth measures are insufficient for modelling the execution time of a parallel algorithm. To
do so, we extend the machinery introduced in the previous chapter. The parallel execution time is the
number of seconds it takes a parallel algorithm to complete on our model distributed-memory machine
representation. We will obtain lower and upper bounds on these times in terms of the parameters:

• α – time to transfer a 0-byte message,

• β – bandwidth cost (per-word),

• γ – time to perform one local operation (unit work).

6

To bound the execution time of an algorithm we seek to determine a cost tuple

Cost =
(
S,W,F

)
, where

S = number of messages communicated,

W = number of words communicated,

F = amount of work done,

so that the execution time satisfies

Tp = Θ(αS + βW + γF) .

The sequential execution time is the time it takes to execute the sequential computational operations,

T1(M1) = γQ1(M1).

The parallel execution time satisfies

Tp(M1) ≥ γQp(M1)/p ≥ γQ1(M1)/p = T1(M1)/p.

The parallel speed-up is given accordingly by

Sp(M1) = T1(M1)/Tp(M1) ,

in general Sp ≤ p. An ideal speed-ups are achievable only by full concurrencywith no communication
overheads. We can bound this speed-up by considering what part of the algorithm is executed sequentially.

Amdahl’s law – if 1/s of the computation is done sequentially, the achievable speed-up is at most s.

Amdahl’s law [10] bounds the speed-up relative to the size of the most expensive unparallelized section
of code. We can derive an optimality criterion using Amdahl’s law, by considering the part of the algorithm
that is inherently sequential i.e., cannot be parallelized. Recall that the depth (D) of an algorithm is the
longest chain of dependent operations in the algorithm, which is exactly the most expensive inherently
sequential portion of the algorithm. Amdahl’s law implies that [31]

Sp =
T1
Tp

≤ Q1γ

Dγ
=
Q1

D
,

or in words,
speedup ≤ work / depth .

3 Scaling Efficiency

The parallel efficiency of an algorithm is its effectiveness relative to the performance of its serial counter-
part. More precisely, it is the fraction of maximal speed-up attained [16],

Ep(M1) = speedup / number of processors = Sp(M1)/p .

The scalability of an algorithm is the relative effectiveness with which parallel algorithm can utilize ad-
ditional processors. There are many ways to define relative scalability metrics, and generally the most

7

important metric is application-dependent. We analyze various metrics including the two key modes for
application scaling to more processors. The most basic mode target lowering the time to solution.

Strong scaling – execution of a parallel algorithm with an increasing number of processors with constant
overall input/output sizes.

Other scaling modes associate an increase of processors with the solution of a larger or more refined
problem. These scaling modes assume that there are a family of problems of increasing input/output size
or complexity. We distinguish the notion of scaling with constant input/output size per processor as weak
scaling, because this mode is fundamental to the scaling of the problem rather than the algorithm. We note
that in literature weak scaling is often defined as parallel scaling with constant work per processor.

Weak scaling – execution of a parallel algorithm with an increasing number of processors with constant
input/output size per processor.

Weak scaling to larger problems that require more memory M1 and work Q1 is often desirable, e.g., for

• finer resolution or larger domain in atmospheric simulation,

• more particles in molecular or galactic simulations, and

• additional physical effects or greater detail in modeling.

Accuracy-based scaling modes may make sense in specific applications, but often mirror similar considera-
tions to the weak scaling regime.

Perfect scaling, Ep(M1) = 1 for p up to Q1 is possible only for embarassingly parallel algorithms,
where all operations are decoupled from one another. In general, we are interested in the degree to which
an algorithm is scalable. When considering strong and weak scaling modes, we will quantify this degree as
the number of processors to which the algorithm will scale with respect to a base input/output size, before it
begins to see a drop-off in efficiency. In other words, we will bound the number of processors to which the
algorithm will scale with nearly linear speed-up.

3.1 Strong Scaling Efficiency

When the problem is not embarrassingly parallel, we are most often interested in obtaining the maximal pos-
sible acceleration in time to solution, and not doing so wastefully with respect to computational resources.
Efficiency provides us with a measure of the extent to which resources are being effectively used by the
parallel algorithm.

Strong scalabity to ps processors – attaining speed-up of Sps = Θ(ps) when using ps processors for
sufficiently large input/output size.

In this sense, strong scalability defines the number of processors to which the algorithm will scale, before
seeing a drop-off in efficiency (e.g., exhaust concurrency or become dominated in cost by communication
overhead). The above notion is equivalent to saying that an algorithm is

strongly scalable to ps processors if Eps = Θ(1).

In effect we seek to asymptotically characterize the function relating the maximum number of processors
we can use efficiently to the amount of work required for the problem, ps(Q1), such that Eps(Q1)(Q1) ≥
1/C for any Q1 and some constant C.

8

The maximal speed-up achievable for an algorithm is at least proportional to the number of processors
to which the algorithm can strong scale, maxp Sp = Ω(ps). This relationship implies the strong scalability
limit,

ps = O(max
p
Sp) = O(Q1/D).

On the other hand, Sp can be asymptotically greater than ps, but if this is the case, than it must occur on a
number of processors p, where efficiency is deteriorating asymptotically, so Ep � 1.

The strong scalability properties are deductible from the execution time model of an algorithm. For
example, consider the strong scalability of computing a summation of n numbers using a binary reduction
tree. The algorithm consists of two stages, displayed in Figure 6,

+ +

+

n/p log p

p

Figure 6: Execution stages in a parallel binary tree summation.

• each of p processors sums n/p elements sequentially, taking time γn/p,

• the partial sums are passed up the binary tree, taking time Θ((α+ β + γ) log p) = Θ(α log p).

The execution time of this binary tree summation algorithm is

Tp(n) = Θ(α log p+ γn/p).

Its efficiency is

Ep(n) = T1(n)/(pTp(n)) = Θ

(
1/
(

1 + (α/γ)p log(p)/n
))

.

To determine the strong scalability limit, we seek f(n) so that so long as ps = Θ(f(n)), Eps = Θ(1). The
efficiency function Ep(n) stays over 1/2 so long as (α/γ) log(p)/n ≤ 1. Once p is sufficiently high for
this critical point to occur, which defines ps, then for larger p the efficiency deteriorates as Θ(1/ log(p/ps)).
This means that the algorithm is strongly scalable to ps processors, where

ps log(ps) = Θ((γ/α)n).

We can then use the fact that

x log x = y ⇒ x = y/ log x = y/ log(y/ log(x)) = y/(log(y)− log log(x)) ≈ y/ log(y),

with x = ps and y = (γ/α)n, to conclude that the asymptotic strong scalability limit is

ps = Θ((γ/α)n/ log((γ/α)n).

The dependence on the problem size for fixed architectural parameters γ and α is ps = Θ(n/ log(n)). The
work-depth ratio of the problem (Q1 = Θ(n) to D = Θ(log(n))) affirms that Q1/D = Θ(n/ log(n)) is the
maximum possible speed-up.

9

The fraction γ/α corresponds to the ratio for the time it takes to perform a floating point scalar addition
and sending a message between two processors. On current architectures the ratio is very small, γ/α ∈
[10−6, 10−3], and is presumed to decrease further, especially if γ is the aggregate floating point rate of a
node. When running with ps processors, each will perform Fps = Θ(n/p) work, so the ps limit tells us each
processor must perform at least Θ((α/γ) log((γ/α)n)) work, or the latency cost associated with the binary
tree of messages dominates in cost.

Having identified ps, we can express the efficiency function as

Ep(n) = Θ

(
1/
(

1 +
p log(p)

ps log(ps)

))
=

{
Θ(1) : p ≤ ps,
O(ps/p) : p > ps.

So we can observe that the efficiency quickly deteriorates when p surpasses ps in strong scaling.
This type of scaling behavior is common and generally desirable. We can define some useful strong

scalability algorithm classifications for a fixed architecture (α, β, γ).

Strong log-scalability – attaining strong scalability to Ω(Q1/ log(Q1)) processors for an algorithm
requiring Q1 work.

In general, strongly log-scalable algorithms must have logarithmic depth, i.e., D = O(log(Q1)). Al-
gorithms with constant depth D = O(1) are most often nearly embrassingly-parallel, and can potentially
strongly scale to Θ(Q1) processors.

Unconditional strong scalability – attaining strong scalability to Θ(Q1) processors for an algorithm
requiring Q1 work.

3.2 Weak Scaling Efficiency

Strong scalability is always limited by the amount of work and generally the degree of concurrency of the
reference problem. Often, parallelism is needed to solve problems of larger scale efficiently. In such cases,
we would like to study the parallel efficiency of the algorithm on a growing number of processors for a
sequence of growing problem sizes [28]. The definition of problem size and its growth are specific to the
particular problem. Throughout literature, different variants of weak scaling modes are considered, which
generally increase the number of processors while keeping some algorithmic problem size parameter fixed
per processor. Our focus will be on weak scaling as increasing the number of processors with a constant
input/output size per processor, i.e., increasing p and M1 so that M1/p = const.

Most often, we would like to determine the number of processors to which the application can weak
scale while using resources efficiently.

Weak scalabity to ps processors – attaining speed-up of Spw(M0pw) = Θ(pw) when using pw pro-
cessors on input/output size of M1 = M0pw for sufficiently large input/output size per processor M0.

Our weak scaling condition on speed-up is the same as saying that good efficiency is maintained, i.e.,

Epw(M0pw) = Θ(1).

A constant efficiency implies that the ratio of execution time to work per processor stays constant

pwTpw(pwM0)

Q1(pwM0)
≈ T1(M0)

Q1(M0)
.

10

Overall quantifying the dependence of ps, the weak scalability limit, on input/output size problem parame-
ters, allows us to compare algorithms in relative terms as well as predict the amount of resources that can be
effectively used on a distributed-memory computing platform to solve large problems.

As an example, consider the binary tree summation, for which the execution and efficiency function are

Tp(n) = Θ(α log p+ γn/p) and Ep(n) = T1(n)/(pTp(n)) = Θ

(
1/
(

1 + (α/γ)p log(p)/n
)
.

)
To determine the weak scalability limit, pw, we can find the largest p for which Ep(pn0) = Θ(1). We have

Epw(pwn0) = Θ

(
1/
(

1 + (α/γ) log(pw)/n0

))
.

We set (α/γ) log(pw)/n0 = Θ(1), to deduce

pw = Θ(2(γ/α)n0).

Thus, binary tree summation is weakly scalable to a processor count that is exponential in the number of
messages that can be amortized within the local computational time n0γ. The height of the binary tree is
logarithmic in the number of processors as is the number of messages, so the weak scaling limit tells us at
what point the latency cost associated with the binary tree will begin to dominate the execution time. For
instance, if we have exactly Tp(n) = 1 + (α/γ)p log2(p)/n, and select pw = 2(γ/α)n0 , we can observe that

Ep(pn0) = 1/
(

1 + log2(p)/ log2(pw)
)

= 1/
(
1 + logpw(p)

)
,

so the efficiency is above 50% until p = pw, then begins to drop-off at a slow logarithmic rate (logarithm
base is pw). We specifically classify algorithms that achieve weak scalability in this sense.

Weak log-scalability – attaining weak scalability to pw = Ω
(
2M0

)
processors given sufficiently large

M0 (input/output size per processor).

Algorithms that are weakly log-scalable will be a superclass of algorithms that are weakly scalable up
to any number of processors.

Unconditional weak scalability – attaining weak scalability to any number of processors pw =∞.

The binary tree summation example algorithm is weakly log-scalable but not unconditionally weakly
scalable. Any unconditionally strongly scalable algorithm is unconditionally weakly scalable. Similarly,
any strongly log-scalable algorithm is weakly log-scalable. The converse statements do not hold generally.

3.3 Isoefficiency

Our strong and weak scaling anlyses consider efficiency for M1(p) = M1 and M1(p) = M0p, respectively.
The scalability was determined by the point at which the parallel algorithm will deteriorate in efficiency, in
terms of M1(1). An alterntative approach is to use efficiency itself as scaling invariant, i.e., we determine
minimum growth rate in work required to maintain constant efficiency [9].

Isoefficiency function – Q̃(p) – gives the minimum amount of work Q1 = Q̃(p) so that

Ep(Q̃(p)) = Θ(1).

11

If the amount of work grows too quickly, good efficiency will be difficult to sustain for the algorithm.
We have that Q̃(p) = Ω(p) as otherwise efficiency will deteriorate due to insufficient work. Generally, we
have a one-to-one relatonship between input/output size and work, i.e., functions M1(Q1) and Q1(M1). We
can therefore, associate an isoefficiency input/output size function M̃(p) with Q̃(p), which describes the
way input/output size must scale with the number of processors to maintain constant efficiency.

For the binary-tree example, we obtain Q̃(p) = Θ((α/γ)p log(p)), which we again observe to be near-
ideal scaling (now, in the isoefficiency sense, where ideal means Q̃(p) = Θ(p)). Since Q1 = Θ(M1)
for the binary tree summation, we have that Q̃(p) = M̃(p). When Q̃(p) is superlinear, we can deduce
that the execution time must increase as Θ(Q̃(p)/p) with the number of processors p to maintain constant
efficiency. When M̃(p) is superlinear, we can deduce that the memory footprint per processor must increase
as Θ(M̃(p)/p) to maintain constant efficiency. Having to increase the memory footprint is generally more
prohibitive for resource-efficient parallel scalability.

An alternative scaling model that is important for real-time applications is constant execution-time scal-
ing. Like in isoefficiency analysis, the model quantifies the scaling of the input/output size of the problem
M̂1(p), but now aiming to maintain constant execution time rather than efficiency, so Tp(M̂1(p)) = Θ(1).
This scaling mode gives us a relationship between execution time, work, and processor count, which is
useful for determining how to execute a given problem within a particular time-budget.

4 Example

To illustrate the design and analysis techniques introduced in this chapter, we consider a model application,
a fictitious fluid dynamics atmospheric model. The evolution of the atmospheric system is described by
partial differential equations on a 3-D physical domain. The domain is discretized by a nx × ny × nz mesh
of points, where the vertical dimension (altitude) z, much smaller than horizontal dimensions (latitude and
longitude) x and y, so nz � nx, ny. Derivatives in PDEs approximated by finite differences in the x and y
dimensions, but involve a linear-time implicit solve in the z dimension to model solar radiation. Simulation
proceeds through successive discrete steps in time.

4.1 Algorithm

The algorithm performs finite difference approximations at each mesh point using a 5-point stencil rule for
the Laplace operator,(d2
dx2

+
d2

dy2

)
f(x, y, z) ≈ 1

h2
[f(x+h, y, z)+f(x, y+h, z)+f(x−h, y, z)+f(x, y−h, z)−4f(x, y, z)],

where h is the mesh spacing. With a 5-point stencil tasks on a regularly spaced mesh x ⊗ y ⊗ z the ith
approximation to the derivative

(
d2

dx2
+ d2

dy2

)
f(xj , yk, zl) is computed as an average of ith approximation of

the function values at neighboring mesh points,

G(i)(xj , yk, zl) =
1

h2

[
F (i)(xj+1, yk, zl) + F (i)(xj , yk+1, zl) + F (i)(xj−1, yk, zl)

+ F (i)(xj , yk−1, zl)− 4F (i)(xj , uk, zl)
]
.

Solar radiation computations require communication throughout each vertical column of mesh points. The
computed values of G(i) on the mesh-points should be combined with the results of the implicit solve to
compute the next iterates values of F (i+1) on all the mesh points. We assume solar radiation is modelled
by solving a fully-coupled system of equations with O(n) operations. As the implicit solves require global
communication along z-fibers, we do not consider parallelizing them.

12

4.2 Parallelization

1. Partition: Persistent fine-grain tasks can be associated with z-fibers of the nx×ny×nz mesh of which
there are nxny. Each fine-grain task contains mesh points that store associated with data values such
as pressure and temperature.

Our partitioning of the mesh is a domain-decomposition strategy that yields persistent tasks with local
communication. Also of interest are strategies that assign separate tasks to all mesh-points or even
all mesh-points at every time step [14, 18, 19, 29]. These partitioning strategies would enable more
variants of agglomeration and mapping, beyond the scope of what we demonstrate in this example.

2. Communicate: The 5-point stencil scheme implies that the elements of a z fiber at iteration i+1, given
by values F (i+1)(xj , yk, ?) for some xj and yk, are dependent on the values at the previous iteration of
its four neighboring z-fibers: F (i)(xj−1, yk, ?), F

(i)(xj , yk−1, ?), F
(i)(xj+1, yk, ?), F

(i)(xj , yk+1, ?).
Our communication pattern is therefore a near-neighbor exchange on a 2-D grid of tasks.

3. Agglomerate:

• 1-D agglomeration: combine tasks in the y-direction, forming nx agglomerated tasks, each
containing nynz mesh points (can do same in x-direction),

• 2-D agglomeration: combine tasks into b× b horizontal blocks, yielding (nx/b)(ny/b) agglom-
erated tasks, each containing b2nz mesh points.

In both cases, we combine tasks into blocks (rather than selecting a cyclically or randomly distributed
subset), to avoid communication in near-neighbor data exchanges.

4. Map: Blocked mappings minimize the surface area to volume ratio of the computation done by each
processor. For 1-D agglomeration, the blocked mapping strategy assigns each processor nx/p con-
secutive planes of nynz mesh points. For 2-D agglomeration:

• a 1-D block mapping strategy reduces back to 1-D agglomeration,

• a 2-D block mapping strategy assigns each processor an ((nx/b)/
√
p)-by-((ny/b)/

√
p) subgrid

of agglomerated tasks, (a (nx/
√
p)-by-(ny/

√
p)-by-nz overall submesh).

Cyclic or random mappings would increase the surface area of the overall subvolume owned by each
processor. Block-cyclic mappings could be viewed as cyclic mappings of 2-D block agglomerated
tasks of size corresponding to the block dimension. These mappings would warrant consideration if
there was a source of load-imbalance, e.g., the implicit solves performed to model solar effects took
variable time throughout different areas.

4.3 Cost Analysis

For simplicity, we assume in the cost and efficiency analysis that nx = ny. To bound the execution time of
different parallelizations of the atmospheric flow model problem, we quantify the costs (Sp,Wp, Fp) so that
the execution time is Tp ≈ αSp + βWp + γFp. Both of our agglomeration strategies produce coarse-grain
tasks that are load balanced and can execute completely concurrently so long as p ≤ n in the 1-D case and
p ≤ n2 in the 2-D case (limits which we assume hold below). Consequently, both agglomeration strategies
have a computational cost of

Fp = Qp/p = Q1/p = Θ(n2nz/p)

operations per time-step of the atmospheric flow simulation. Moreover, both parallel algorithms are memory
efficient, Mp = Θ(M1/p).

13

In the 1-D agglomeration scheme, each task exchanges 2nnz grid points with each of its two neighbors,
so the bandwidth cost is W 1D

p = 2nnz words and the latency cost if S1D
p = 2 messages per time-step of the

simulation. Consequently, the execution time of the 1-D scheme is

T 1D
p (n, nz) = α2 + β2nnz + Θ(γn2nz/p) = α2 + β2nnz + T1(n, nz)/p.

The overhead, T 1D
p −T 1D

1 /p are the communication costs associated with the near-neighbor data exchanges.
Efficiency will be decided by whether most of the execution time is spent doing these halo exchanges as
opposed to working on the local computation.

The 2-D agglomeration strategies, permits each mesh subdomain (of size n2nz/p) to have a smaller
surface-area to volume ratio, needing to exchange a total of only 2nnz/

√
p+2nnz/

√
p = 4nnz/

√
p points

with its four neighbors. Consequently, the 2-D agglomeration scheme has a bandwidth cost of W 2D
p =

4nnz/
√
p words and S2D

p = 4 messages per time-step of the simulation. Consequently, the execution time
of the 2-D scheme is

T 2D
p (n, nz) = α4 + β4nnz/

√
p+ Θ(γn2nz/p).

The bandwidth cost is reduced by a factor of Θ(
√
p) by doing a higher-dimensional blocking, however,

twice the number of messages is required.

4.4 Efficiency Analysis

Our cost and execution time analysis provides us with a basic performance model and terms for comparative
evaluation. Efficiency analysis provides us with secondary information regarding how the overhead cost
terms will affect parallel scalability. Understanding scalability quantitatively provides us with the relative
and absolute metrics that are usually sought after.

4.4.1 Parallel Efficiency

We can gauge the strong and weak scalability as well as the isoefficiency from the efficiency functions of
the parallel algorithms. These are directly related to our execution time models. The efficiency function of
the 1-D agglomeration scheme is

E1D
p = S1D

p /p = T1/[pT
1D
p]

= T1/
[
p(α2 + β2nxnz + T1/p)

]
= 1/

[
1 + α2p/T1 + β2nnzp/T1

]
= 1/

[
1 + (α/γ)2p/(n2nz) + (β/γ)2p/n

]
.

Similarly, the efficiency function of the 2-D agglomeration scheme is

E2D
p = S2D

p /p = T1/[pT
2D
p]

= 1/
[
1 + α4p/T1 + β4nnz

√
p/T1

]
= 1/

[
1 + (α/γ)4p/(n2nz) + (β/γ)4

√
p/n

]
.

In both efficiency, we have terms with coefficients α/γ and β/γ. These coefficients tell us the number of
computational operations that can be performed, respectively, in the time it takes to send a 0-byte message
and in the the time it takes to communicate a word of data. These coefficients correspond to ratios associated

14

with the processing rates of a given computer architecture. Sometimes, we are interested in the behavior of
the efficiency only as a function of input/output size and the number of processors, i.e., in these cases, we
consider α, β, and γ to be fixed constants. However, in general β/γ � 1 and α/γ � β/γ, so carrying the
dependencies on this terms will allow for different qualitative conclusions. For instance, since Wp ≥ Sp,
ignoring dependence on α and β would imply ignoring dependence on latency cost altogether.

4.4.2 Strong Scalability

Both agglomeration schemes have cost overheads that grow polynomially with the number of processors,
implying that neither will be unconditionally strong scalable or strongly log-scalable. The 1-D agglomera-
tion scheme will scale to p1Ds processors, where p1Ds is determined by setting

E1D
p1Ds

= 1/
[
1 + (α/γ)2p1Ds /(n2nz) + (β/γ)2p1Ds /n

]
= Θ(1).

Rearranging the above equation algebraically, we deduce that 1-D agglomeration is strongly scalable to

p1Ds = Θ

(
min

[
(γ/α)n2nz, (γ/β)n

])
processors.

As mentioned previously, the 1-D agglomeration scheme is only work-efficient so long as p ≤ n, as it
generates at most n tasks. In light of this, we can conclude that the latency cost is likely not prohibitive
to strong scaling (unless α ≥ βnnz). The bandwidth cost tells us that the strong scaling limit is ps =
O((γ/β)n), which is a factor of γ/β smaller than the limit we can deduce from the work distribution alone.
An interpretation of this 1-D strong scaling limit bound is that good efficiency is maintained so long as
the number of yz-plains assigned to each processor require longer to perform local computation for than to
communicate Θ(nnz) words to another processor. The depth of the sequential algorithm is D = Θ(nz),
which suggests that the maximum speed-up could be as high as S∞ = Θ(Q1/D) = Θ(n2), suggesting the
1-D scheme could be suboptimal.

A similar analysis shows that the 2-D agglomeration is strongly scalable to

p2Ds = Θ

(
min

[
(γ/α)n2nz, (γ/β)2n2

])
processors.

For fixed (constant) γ/β, 2-D agglomeration can achieve strong scaling to Θ(n2) processors, attaining the
maximum speed-up possible for the work and depth of the sequential algorithm. However, the analysis tells
us that the maximum possible speedup is in fact a factor of (γ/β)2 less processors than Θ(n). With respect
to the 1-D agglomeration algorithm, 2-D agglomeration generally permits strong scalability to Θ((γ/β)n)
more processors. Assuming the scalability is bandwidth-limited (α ≥ βnnz), we have that the 2-D agglom-
eration strong scalability limit p2Ds is the square of the 1-D agglomeration strong scalability limit p1Ds . A
similar interpretation as of the 1-D strong scaling limit can be applied to the 2-D agglomeration algorithm,
except now the amount of data sent decreases with the number of processors, so we are now interested in
when the surface-area to volume ratio decreases so that the halo-exchange dominates the local computation.

4.4.3 Weak Scalability

To reason about weak scaling, we need to a notion of increasing input/output size for the atmospheric flow
model problem. The context of the problem yields two particularly sensible options,

• increase n, nz proportionally,

• increase n while keeping nz constant.

15

In the first case, we grow the mesh with the same ratio of dimensions, while in the latter case we grow the
two horizontal dimensions, increasing the amount of concurrency with the amount of processors. We assume
that the latter scaling mode is of most interest, as it captures larger subsections of the atmosphere to the same
level of refinement. The overall input/output size is n2nz , so we assume n2 increases proportionately to p
in weak scaling the problem.

Provided the above input/output size scaling characteristics, the weak scalability is described for 1-D
agglomeration by scaling from a problem of dimensions n0 × n0 × nz to a problem of size n0

√
pw ×

n0
√
pw × nz , where pw is defined so that

E1D
pw (n0

√
pw, nz) = 1/

(
1 +

α

γ

2

n20nz
+
β

γ

2
√
pw

n0

)
= Θ(1).

We can conclude that 1-D agglomeration is weakly scalable to

pw = O((γ/β)2n20) processors,

coincidentally the same limit as the one to which the 2-D agglomeration scheme was strongly scalable.
Notably, we can observe that the weak scaling limit is independent of latency cost, as the number of messages
per time-step stays constant. We can also deduce a work-based weak scaling limit of pw = O(n20) for the
1-D algorithm, as it partitions work among at most n = n0

√
p processors, running out of work to assign

processors if
√
p > n0.

For 2-D agglomeration, we can observe that

E2D
p (n0

√
p, nz) = 1/

(
1 +

α

γ

4

n20nz
+
β

γ

4

n0

)
stays constant as p increases. Therefore, 2-D agglomeration achieves unconditional weak scaling for the
atmospheric flow model problem. This conclusion makes sense in light of the fact that the subdomain
assigned to each processor stays the same in the weak scaling regime for 2-D agglomeration, as do the
latency, bandwidth, and computational costs.

4.4.4 Isoefficiency

To determine the isoefficiency function Q̃(p), we first determine a relative growth rate ñ(p) = nx(p) =
ny(p) needed to maintain constant efficiency. For the 1-D agglomeration case, this implies that we need,

E1D
p (ñ(p), nz) = 1/

(
1 +

α

γ

2p

ñ(p)2nz
+
β

γ

2p

ñ(p)

)
= Θ(1).

While the equation is the same as what we had in the strong scaling analysis, we are now interested in
solving for ñ(p) rather than p. The last term in the denominator of the efficiency function implies that we
need ñ(p) = Θ((β/γ)p). The isoefficiency function for 1-D agglomeration is

Q̃(p) = nzñ(p)2 = Θ((β/γ)2nzp
2),

or for fixed α, β, γ, Q̃(p) = Θ((β/γ)2nzp
2). This isoefficiency function implies that the work per processor

must grow with the number of processors to maintain constant efficiency. Moreover, this implies the same
growth in the memory-footprint, which is very prohibitive.

For 2-D agglomeration, we can observe that the efficiency function is

E2D
p (ñ(p), nz) = 1/

[
1 + (α/γ)4p/(ñ(p)2nz) + (β/γ)4

√
p/ñ(p)

]
.

Therefore, constant efficiency is maintained so long as for a fixed α, β, γ, we have ñ(p) = Θ(
√
p). Conse-

quently, the isoefficiency function for 2-D agglomeration is Q̃(p) = Θ(p). In fact, the isoefficiency function
is linear for any parallel algorithm that is unconditionally weakly scalable.

16

5 General References

General references on parallel algorithm design

• K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988

• I. T. Foster, Designing and Building Parallel Programs, Addison-Wesley, 1995

• A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel Computing, 2nd. ed.,
Addison-Wesley, 2003

• T. G. Mattson and B. A. Sanders and B. L. Massingill, Patterns for Parallel Programming, Addison-
Wesley, 2005

• M. J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, 1994

General references on parallel algorithm analysis

• J. JáJá. An introduction to parallel algorithms. Vol. 17. Reading: Addison-Wesley, 1992.

• D. L. Eager, J. Zahorjan, and E. D. Lazowska, Speedup versus efficiency in parallel systems, IEEE
Trans. Comput. 38:408-423, 1989

• A. Grama, A. Gupta, and V. Kumar, Isoefficiency: measuring the scalability of parallel algorithms
and architectures, IEEE Parallel Distrib. Tech. 1(3):12-21, August 1993

• V. Kumar and A. Gupta, Analyzing scalability of parallel algorithms and architectures, J. Parallel
Distrib. Comput. 22:379-391, 1994

• D. M. Nicol and F. H. Willard, Problem size, parallel architecture, and optimal speedup, J. Parallel
Distrib. Comput. 5:404-420, 1988

• J. P. Singh, J. L. Hennessy, and A. Gupta, Scaling parallel programs for multiprocessors: methodology
and examples, IEEE Computer, 26(7):42-50, 1993

• X. H. Sun and L. M. Ni, Scalable problems and memory-bound speedup, J. Parallel Distrib. Comput.,
19:27-37, 1993

• P. H. Worley, The effect of time constraints on scaled speedup, SIAM J. Sci. Stat. Comput., 11:838-
858, 1990

References

[1] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzarán, D. Padua, and
C. Von Praun. Programming for parallelism and locality with hierarchically tiled arrays. In Proceed-
ings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 48–57. ACM, 2006.

17

[2] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo, J. Demmel, I. Dhillon, S. Hammarling, G. Henry,
A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK User’s Guide. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[3] G. Blelloch. Parallel thinking, 2009. Presented at Principles and Practices of Parallel Programming
(PPoPP), 2009.

[4] G. E. Blelloch. NESL: A nested data-parallel language. Technical report, Pittsburgh, PA, USA, 1992.

[5] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM
symposium on Theory of computing, pages 151–158. ACM, 1971.

[6] C. Farhat and M. Lesoinne. Automatic partitioning of unstructured meshes for the parallel solution of
problems in computational mechanics. International Journal for Numerical Methods in Engineering,
36(5):745–764, 1993.

[7] M. Girkar and C. D. Polychronopoulos. Automatic extraction of functional parallelism from ordinary
programs. IEEE Transactions on Parallel and Distributed Systems, 3(2):166–178, Mar 1992.

[8] M. B. Girkar. Functional Parallelism: Theoretical Foundations and Implementation. PhD thesis,
Champaign, IL, USA, 1992. UMI Order No. GAX92-15814.

[9] A. Grama, A. Gupta, and V. Kumar. Isoefficiency function: A scalability metric for parallel algo-
rithms and architectures. In IEEE Parallel and Distributed Technology, Special Issue on Parallel and
Distributed Systems: From Theory to Practice. Citeseer, 1993.

[10] J. L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–533, 1988.

[11] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

[12] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms. Communications of the ACM, 29(12):1170–
1183, 1986.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel programs from
sequential building blocks. In ACM SIGOPS operating systems review, volume 41, pages 59–72. ACM,
2007.

[14] H. Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceedings of the thirteenth
Annual ACM Symposium on Theory of Computing, STOC ’81, pages 326–333, New York, NY, USA,
1981. ACM.

[15] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented system based on C++.
In ACM Sigplan Notices, volume 28, pages 91–108. ACM, 1993.

[16] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures. Journal of
Parallel and Distributed Computing, 22(3):379 – 391, 1994.

[17] H. Kung. The structure of parallel algorithms. volume 19 of Advances in Computers, pages 65 – 112.
Elsevier, 1980.

[18] C. E. Leiserson, S. Rao, and S. Toledo. Efficient out-of-core algorithms for linear relaxation using
blocking covers. In Foundations of Computer Science, 1993. Proceedings., 34th Annual Symposium
on, pages 704–713. IEEE, 1993.

18

[19] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in sparse ma-
trix solvers. In Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, page 36. ACM, 2009.

[20] W. Neiswanger, C. Wang, and E. Xing. Asymptotically exact, embarrassingly parallel MCMC. arXiv
preprint arXiv:1311.4780, 2013.

[21] J. Nieplocha, R. J. Harrison, and R. J. Littlefield. Global Arrays: A nonuniform memory access
programming model for high-performance computers. The Journal of Supercomputing, 10:169–189,
1996.

[22] M. G. Norman, S. Pelagatti, and P. Thanisch. On the complexity of scheduling with communication
delay and contention. Parallel Processing Letters, 5(03):331–341, 1995.

[23] R. W. Numrich and J. Reid. Co-Array Fortran for parallel programming. In ACM Sigplan Fortran
Forum, volume 17, pages 1–31. ACM, 1998.

[24] J. Poulson, B. Marker, R. A. Van de Geijn, J. R. Hammond, and N. A. Romero. Elemental: A new
framework for distributed memory dense matrix computations. ACM Transactions on Mathematical
Software (TOMS), 39(2):13, 2013.

[25] H. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in En-
gineering, 2(2):135 – 148, 1991. Parallel Methods on Large-scale Structural Analysis and Physics
Applications.

[26] O. Sinnen and L. A. Sousa. Communication contention in task scheduling. IEEE Transactions on
Parallel and Distributed Systems, 16(6):503–515, 2005.

[27] J. Subhlok and G. Vondran. Optimal use of mixed task and data parallelism for pipelined computations.
Journal of Parallel and Distributed Computing, 60(3):297 – 319, 2000.

[28] X.-H. Sun and J. L. Gustafson. Toward a better parallel performance metric. Parallel Computing,
17(10-11):1093–1109, 1991.

[29] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. The Pochoir stencil
compiler. In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms
and Architectures, pages 117–128. ACM, 2011.

[30] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting coarse-grained
pipeline parallelism in C programs. In Proceedings of the 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 356–369. IEEE Computer Society, 2007.

[31] U. Vishkin and A. Wigderson. Trade-offs between depth and width in parallel computation. SIAM
Journal on Computing, 14(2):303–314, 1985.

[32] M. H. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic load balancing on highly parallel
computers. IEEE Transactions on parallel and distributed systems, 4(9):979–993, 1993.

[33] G. Zheng, E. Meneses, A. Bhatele, and L. V. Kale. Hierarchical load balancing for Charm++ applica-
tions on large supercomputers. In Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on, pages 436–444. IEEE, 2010.

19

	Design
	Parallelization Methodology
	Partitioning
	Agglomeration
	Mapping

	Cost Analysis
	Scaling Efficiency
	Strong Scaling Efficiency
	Weak Scaling Efficiency
	Isoefficiency

	Example
	Algorithm
	Parallelization
	Cost Analysis
	Efficiency Analysis
	Parallel Efficiency
	Strong Scalability
	Weak Scalability
	Isoefficiency

	General References

