
LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Parallel Numerical Algorithms
Chapter 3 – Dense Linear Systems

Section 3.2 – LU Factorization

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Outline

1 LU Factorization
Motivation
Gaussian Elimination

2 Parallel Algorithms for LU
Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

3 Partial Pivoting

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

LU Factorization

System of linear algebraic equations has form

Ax = b

where A is given n× n matrix, b is given n-vector, and x is
unknown solution n-vector to be computed

Direct method for solving general linear system is by
computing LU factorization

A = LU

where L is unit lower triangular and U is upper triangular

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

LU Factorization

System Ax = b then becomes

LUx = b

Solve lower triangular system

Ly = b

by forward-substitution to obtain vector y

Finally, solve upper triangular system

Ux = y

by back-substitution to obtain solution x to original system

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Gaussian Elimination Algorithm

LU factorization can be computed by Gaussian elimination as
follows, where U overwrites A

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ikakj

end
end

end

{ loop over columns }
{ compute multipliers

for current column }

{ apply transformation to
remaining submatrix }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Gaussian Elimination Algorithm

In general, row interchanges (pivoting) may be required to
ensure existence of LU factorization and numerical stability
of Gaussian elimination algorithm, but for simplicity we
temporarily ignore this issue

Gaussian elimination requires about n3/3 paired additions
and multiplications, so model serial time as

T1 = γ n3/3

where γ is time required for multiply-add operation

About n2/2 divisions also required, but we ignore this
lower-order term

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Loop Orderings for Gaussian Elimination

Gaussian elimination has general form of triple-nested loop
in which entries of L and U overwrite those of A

for
for

for
aij = aij − (aik/akk) akj

end
end

end

Indices i, j, and k of for loops can be taken in any order,
for total of 3! = 6 different ways of arranging loops

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Loop Orderings for Gaussian Elimination

Different loop orders have different memory access
patterns, which may cause their performance to vary
widely

Right-looking orderings (loop over k is outermost) perform
updates to the trailing matrix (update all aij for i, j ≥ k)
eagerly

Left-looking orderings (loop over k is innermost) update
the trailing matrix lazily (updates to aij done only when all
entries ai′j′ with min(i′, j′) < min(i, j) have been updated)

Right-looking ordering achieve better read-locality (the
same divisor and outer-product vectors are reused)

Left-looking ordering achieve better write-locality (entries
of A may be changed in memory only once)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Motivation
Gaussian Elimination

Gaussian Elimination Algorithm

Right-looking form of Gaussian elimination

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

Multipliers `ik computed outside inner loop for greater
efficiency

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores{

uij , if i ≤ j
`ij , if i > j

yielding 2-D array of n2 fine-grain tasks

Communicate

Broadcast entries of A vertically to tasks below

Broadcast entries of L horizontally to tasks to right

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Fine-Grain Tasks and Communication

a11
u11

a12
u12

a21
ℓ21

a22
u22

a13
u13

a14
u14

a23
u23

a24
u24

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
u33

a34
u34

a43
ℓ43

a44
u44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a15
u15

a16
u16

a25
u25

a26
u26

a35
u35

a36
u36

a45
u45

a46
u46

a55
u55

a56
u56

a65
ℓ65

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Fine-Grain Parallel Algorithm

for k = 1 to min(i, j)− 1
recv broadcast of akj from task (k, j)
recv broadcast of `ik from task (i, k)
aij = aij − `ik akj

end
if i ≤ j then

broadcast aij to tasks (k, j), k = i+ 1, . . . , n
else

recv broadcast of ajj from task (j, j)
`ij = aij/ajj
broadcast `ij to tasks (i, k), k = j + 1, . . . , n

end

{ vert bcast }
{ horiz bcast }
{ update entry }

{ vert bcast }

{ vert bcast }
{ multiplier }
{ horiz bcast }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

2-D Agglomeration

a11
u11

a12
u12

a21
ℓ21

a22
u22

a13
u13

a14
u14

a23
u23

a24
u24

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
u33

a34
u34

a43
ℓ43

a44
u44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a15
u15

a16
u16

a25
u25

a26
u26

a35
u35

a36
u36

a45
u45

a46
u46

a55
u55

a56
u56

a65
ℓ65

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Blocked LU factorization

A

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Blocked LU factorization

L₀₀

U₀₀

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Blocked LU factorization

L

U

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Blocked LU factorization

L

U

S=A-LU

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Coarse-Grain 2-D Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : j ∈ mycols, j ≥ k} in processor column
if k ∈ mycols then

for i ∈ myrows, i > k
`ik = aik/akk { multipliers }

end
end
broadcast {`ik : i ∈ myrows, i > k} in processor row
for j ∈ mycols, j > k

for i ∈ myrows, i > k,
aij = aij − `ik akj { update }

end
end

end
Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Column Agglomeration

a11
u11

a12
u12

a21
ℓ21

a22
u22

a13
u13

a14
u14

a23
u23

a24
u24

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
u33

a34
u34

a43
ℓ43

a44
u44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a15
u15

a16
u16

a25
u25

a26
u26

a35
u35

a36
u36

a45
u45

a46
u46

a55
u55

a56
u56

a65
ℓ65

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Row Agglomeration

a11
u11

a12
u12

a21
ℓ21

a22
u22

a13
u13

a14
u14

a23
u23

a24
u24

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
u33

a34
u34

a43
ℓ43

a44
u44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a15
u15

a16
u16

a25
u25

a26
u26

a35
u35

a36
u36

a45
u45

a46
u46

a55
u55

a56
u56

a65
ℓ65

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Mapping

Map

2-D: assign (n/k)2/p coarse-grain tasks to each of p
processors treating target network as 2-D mesh, using

blocked mapping (aggregating into larger blocks)
cyclic mapping of blocks, yielding block-cyclic layout

1-D: assign n/p coarse-grain tasks to each of p processors
treating target network as 1-D mesh, using

blocked mapping (aggregating into panels)
cyclic mapping of rows/cols, yielding row-cyclic or
column-cyclic layout

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Column Agglomeration with Cyclic Mapping

a11
u11

a21
ℓ21

a31
ℓ31

a41
ℓ41

a51
ℓ51

a61
ℓ61

a12
u12

a22
u22

a32
ℓ32

a42
ℓ42

a52
ℓ52

a62
ℓ62

a13
u13

a23
u23

a33
u33

a43
ℓ43

a53
ℓ53

a63
ℓ63

a14
u14

a24
u24

a34
u34

a44
u44

a54
ℓ54

a64
ℓ64

a15
u15

a25
u25

a35
u35

a45
u45

a55
u55

a65
ℓ65

a16
u16

a26
u26

a36
u36

a46
u46

a56
u56

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Column Agglomeration

Matrix rows need not be broadcast vertically, since any
given column is contained entirely in only one process

But there is no parallelism in computing multipliers or
updating any given column

Horizontal broadcasts still required to communicate
multipliers for updating

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Coarse-Grain 1-D Column Parallel Algorithm

for k = 1 to n− 1
if k ∈ mycols then

for i = k + 1 to n
`ik = aik/akk

end
end
broadcast {`ik : k < i ≤ n}
for j ∈ mycols, j > k

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

{ multipliers }

{ broadcast }

{ update }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Row Agglomeration with Cyclic Mapping

a11
u11

a12
u12

a13
u13

a14
u14

a15
u15

a16
u16

a21
ℓ21

a22
u22

a23
u23

a24
u24

a25
u25

a26
u26

a31
ℓ31

a32
ℓ32

a33
u33

a34
u34

a35
u35

a36
u36

a41
ℓ41

a42
ℓ42

a43
ℓ43

a44
u44

a45
u45

a46
u46

a51
ℓ51

a52
ℓ52

a53
ℓ53

a54
ℓ54

a55
u55

a56
u56

a61
ℓ61

a62
ℓ62

a63
ℓ63

a64
ℓ64

a65
ℓ65

a66
u66

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

1-D Row Agglomeration

Multipliers need not be broadcast horizontally, since any
given matrix row is contained entirely in only one process

But there is no parallelism in updating any given row

Vertical broadcasts still required to communicate each row
of matrix to processors below it for updating

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Coarse-Grain 1-D Row Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : k ≤ j ≤ n}
for i ∈ myrows, i > k,

`ik = aik/akk
end
for j = k + 1 to n

for i ∈ myrows, i > k,
aij = aij − `ik akj

end
end

end

{ broadcast }

{ multipliers }

{ update }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Block-Cyclic LU Factorization

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Block-Cyclic LU Factorization

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Block-Cyclic LU Factorization

L

U

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Block-Cyclic LU Factorization

L

U

S=A-LU

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Performance Enhancements

Each processor becomes idle as soon as its last row and
column are completed

With block mapping, in which each processor holds
contiguous block of rows and columns, some processors
become idle long before overall computation is complete

Block mapping also yields unbalanced load, as computing
multipliers and updates requires successively less work
with increasing row and column numbers

Cyclic or reflection mapping improves both concurrency
and load balance

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Performance Enhancements

Performance can also be enhanced by overlapping
communication and computation

At step k, each processor completes updating its portion of
remaining unreduced submatrix before moving on to step
k + 1

Broadcast of each segment of row k + 1, and computation
and broadcast of each segment of multipliers for step k+ 1,
could be initiated as soon as relevant segments of row
k+ 1 and column k+ 1 have been updated by their owners,
before completing remainder of their updating for step k
This look-ahead strategy enables other processors to start
working on next step earlier than they otherwise could

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Execution Time for 1-D Agglomeration

With 1-D column agglomeration, each processor factorizes
panels of b columns, then broadcasts them to perform the
trailing matrix update
While work-efficient Wp = Θ(n3), the concurrency in
computational cost is constrained by panel factorization

Fp(n, b) = Θ((n/b)nb2 + n3/p)

so we need b < n/p to maintain Fp(n, b) = Θ(n3/p)

The overall execution time is given by

Tp(n, b) = Θ
(

(n/b)T bcast
p (nb) + γFp(n, b)

)
It is generally minimized by picking b = Θ(n/p)

Tp(n, b) = Θ(αp log p+ βn2 + γn3/p)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 35 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Execution Time for 2-D Agglomeration

With 2-D agglomeration and block-cyclic mapping, a
processor factorizes a b× b diagonal block, broadcasts it to
a column and row of processors, which update the panels
and broadcast them to perform the trailing matrix updates

The computational cost is constrained by lack of
concurrency in the diagonal

Fp(n, b) = O(n3/p+ nb2 + n2b/
√
p)

The overall execution time is given by

Tp(n, b) = Θ
(

(n/b)(T bcast√
p (b2)+T bcast√

p (nb/
√
p))+γFp(n, b)

)
It is generally minimized by picking b = n/

√
p

Tp(n) = Tp(n, n/
√
p) = Θ(α

√
p log p+ βn2/

√
p+ γn3/p)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Scalability for 2-D Agglomeration

Cannon’s algorithm for matrix multiplication (2-D
agglomeration), could achieve strong scaling speed-up
ps = O((γ/α)n2) and unconditional weak scaling
The SUMMA algorithm, which was based on broadcasts,
achieved slightly inferior scaling due to a Θ(log(p)) term on
the latency cost
The execution time of 2-D agglomeration for LU is the
same as of SUMMA, so the efficiency and scaling
characteristics are the same
On the other hand, it is not possible to achieve strong
scaling to O((γ/α)n3/ log(n)) processors as the depth of
the usual LU algorithm is D = n, meaning the maximum
speed-up is ps = Θ(maxp Sp) = O(Q1/D) = O(n2)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 37 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Partial Pivoting

Row ordering of A is irrelevant in system of linear
equations

Partial pivoting takes rows in order of largest entry in
magnitude of leading column of remaining unreduced
matrix

This choice ensures that multipliers do not exceed 1 in
magnitude, which reduces amplification of rounding errors

In general, partial pivoting is required to ensure existence
and numerical stability of LU factorization

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Partial Pivoting

Partial pivoting yields factorization of form

PA = LU

where P is permutation matrix

If PA = LU , then system Ax = b becomes

PAx = LUx = Pb

which can be solved by forward-substitution in lower
triangular system Ly = Pb, followed by back-substitution
in upper triangular system Ux = y

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Parallel Partial Pivoting

Partial pivoting complicates parallel implementation of
Gaussian elimination and significantly affects potential
performance

With 2-D algorithm, pivot search is parallel but requires
communication within processor column (S = Ω(n log(p)))
and inhibits overlap

With 1-D column algorithm, pivot search requires no
communication but is purely serial

Once pivot is found, index of pivot row must be
communicated to other processors, and rows must be
explicitly or implicitly interchanged in each process

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Alternatives to Partial Pivoting

Because of negative effects of partial pivoting on parallel
performance, various alternatives have been proposed that
limit pivot search

tournament pivoting (perform tree of partial pivoting on
different subsets of matrix rows, selecting b at a time)
threshold pivoting (use local rows as pivots if the diagonal
entries are within threshold of column norm)
pairwise pivoting (eliminate n(n− 1)/2 entries by as many
2-by-2 transformations LiPi, where Li is unit-lower
triangular and Pi is a permutation matrix, applied to
appropriate row pairs)

Stability generally slightly worse in theory and for
particularly hard test-cases
Better stability without worrying about pivoting may be
achieved via QR factorization

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Communication vs. Memory Tradeoff

If explicit replication of storage is allowed, then lower
communication volume is possible

As with matrix multiplication, algorithms that leverage all
available memory to reduce communication cost to the
maximum extent possible

If sufficient memory is avaiable, then these algorithms can
achieve provably optimal communication

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 42 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

References

J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

G. A. Geist and C. H. Romine, LU factorization algorithms
on distributed-memory multiprocessor architectures, SIAM
J. Sci. Stat. Comput. 9:639-649, 1988

L. Grigori, J. Demmel, and H. Xiang, CALU: A
communication optimal LU factorization algorithm, SIAM J.
Matrix Anal. Appl. 32:1317-1350, 2011

B. A. Hendrickson and D. E. Womble, The torus-wrap
mapping for dense matrix calculations on massively
parallel computers, SIAM J. Sci. Stat. Comput.
15:1201-1226, 1994

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

References

J. M. Ortega, Introduction to Parallel and Vector Solution of
Linear Systems, Plenum Press, 1988
J. M. Ortega and C. H. Romine, The ijk forms of
factorization methods II: parallel systems, Parallel Comput.
7:149-162, 1988
Y. Robert, The Impact of Vector and Parallel Architectures
on the Gaussian Elimination Algorithm, Wiley, 1990
S. A. Vavasis, Gaussian elimination with pivoting is
P-complete, SIAM J. Disc. Math. 2:413-423, 1989

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 44 / 44


	LU Factorization
	Motivation
	Gaussian Elimination

	Parallel Algorithms for LU
	Fine-Grain Algorithm
	Agglomeration Schemes
	Mapping Schemes
	Scalability

	Partial Pivoting
	

