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LU Factorization

System of linear algebraic equations has form

Ax = b

where A is given n× n matrix, b is given n-vector, and x is
unknown solution n-vector to be computed

Direct method for solving general linear system is by
computing LU factorization

A = LU

where L is unit lower triangular and U is upper triangular
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LU Factorization

System Ax = b then becomes

LUx = b

Solve lower triangular system

Ly = b

by forward-substitution to obtain vector y

Finally, solve upper triangular system

Ux = y

by back-substitution to obtain solution x to original system
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Gaussian Elimination Algorithm

LU factorization can be computed by Gaussian elimination as
follows, where U overwrites A

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ikakj

end
end

end

{ loop over columns }
{ compute multipliers

for current column }

{ apply transformation to
remaining submatrix }
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Gaussian Elimination Algorithm

In general, row interchanges (pivoting) may be required to
ensure existence of LU factorization and numerical stability
of Gaussian elimination algorithm, but for simplicity we
temporarily ignore this issue

Gaussian elimination requires about n3/3 paired additions
and multiplications, so model serial time as

T1 = γ n3/3

where γ is time required for multiply-add operation

About n2/2 divisions also required, but we ignore this
lower-order term
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Loop Orderings for Gaussian Elimination

Gaussian elimination has general form of triple-nested loop
in which entries of L and U overwrite those of A

for
for

for
aij = aij − (aik/akk) akj

end
end

end

Indices i, j, and k of for loops can be taken in any order,
for total of 3! = 6 different ways of arranging loops
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Loop Orderings for Gaussian Elimination

Different loop orders have different memory access
patterns, which may cause their performance to vary
widely

Right-looking orderings (loop over k is outermost) perform
updates to the trailing matrix (update all aij for i, j ≥ k)
eagerly

Left-looking orderings (loop over k is innermost) update
the trailing matrix lazily (updates to aij done only when all
entries ai′j′ with min(i′, j′) < min(i, j) have been updated)

Right-looking ordering achieve better read-locality (the
same divisor and outer-product vectors are reused)

Left-looking ordering achieve better write-locality (entries
of A may be changed in memory only once)
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Gaussian Elimination Algorithm

Right-looking form of Gaussian elimination

for k = 1 to n− 1
for i = k + 1 to n

`ik = aik/akk
end
for j = k + 1 to n

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

Multipliers `ik computed outside inner loop for greater
efficiency

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 44



LU Factorization
Parallel Algorithms for LU

Partial Pivoting

Fine-Grain Algorithm
Agglomeration Schemes
Mapping Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes and stores{

uij , if i ≤ j
`ij , if i > j

yielding 2-D array of n2 fine-grain tasks

Communicate

Broadcast entries of A vertically to tasks below

Broadcast entries of L horizontally to tasks to right
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Fine-Grain Tasks and Communication

a11
u11

a12
u12

a21
ℓ21

a22
u22

a13
u13

a14
u14

a23
u23

a24
u24

a31
ℓ31

a32
ℓ32

a41
ℓ41

a42
ℓ42

a33
u33

a34
u34

a43
ℓ43

a44
u44

a51
ℓ51

a52
ℓ52

a61
ℓ61

a62
ℓ62

a53
ℓ53

a54
ℓ54

a63
ℓ63

a64
ℓ64

a15
u15

a16
u16

a25
u25

a26
u26

a35
u35

a36
u36

a45
u45

a46
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a55
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a56
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a65
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a66
u66
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Fine-Grain Parallel Algorithm

for k = 1 to min(i, j)− 1
recv broadcast of akj from task (k, j)
recv broadcast of `ik from task (i, k)
aij = aij − `ik akj

end
if i ≤ j then

broadcast aij to tasks (k, j), k = i+ 1, . . . , n
else

recv broadcast of ajj from task (j, j)
`ij = aij/ajj
broadcast `ij to tasks (i, k), k = j + 1, . . . , n

end

{ vert bcast }
{ horiz bcast }
{ update entry }

{ vert bcast }

{ vert bcast }
{ multiplier }
{ horiz bcast }
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Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks
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2-D Agglomeration
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Blocked LU factorization

A
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Blocked LU factorization
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U₀₀
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Blocked LU factorization

L

U

S=A-LU
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Coarse-Grain 2-D Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : j ∈ mycols, j ≥ k} in processor column
if k ∈ mycols then

for i ∈ myrows, i > k
`ik = aik/akk { multipliers }

end
end
broadcast {`ik : i ∈ myrows, i > k} in processor row
for j ∈ mycols, j > k

for i ∈ myrows, i > k,
aij = aij − `ik akj { update }

end
end

end
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1-D Column Agglomeration
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1-D Row Agglomeration
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Mapping

Map

2-D: assign (n/k)2/p coarse-grain tasks to each of p
processors treating target network as 2-D mesh, using

blocked mapping (aggregating into larger blocks)
cyclic mapping of blocks, yielding block-cyclic layout

1-D: assign n/p coarse-grain tasks to each of p processors
treating target network as 1-D mesh, using

blocked mapping (aggregating into panels)
cyclic mapping of rows/cols, yielding row-cyclic or
column-cyclic layout
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1-D Column Agglomeration with Cyclic Mapping
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1-D Column Agglomeration

Matrix rows need not be broadcast vertically, since any
given column is contained entirely in only one process

But there is no parallelism in computing multipliers or
updating any given column

Horizontal broadcasts still required to communicate
multipliers for updating
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Coarse-Grain 1-D Column Parallel Algorithm

for k = 1 to n− 1
if k ∈ mycols then

for i = k + 1 to n
`ik = aik/akk

end
end
broadcast {`ik : k < i ≤ n}
for j ∈ mycols, j > k

for i = k + 1 to n
aij = aij − `ik akj

end
end

end

{ multipliers }

{ broadcast }

{ update }
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1-D Row Agglomeration with Cyclic Mapping
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1-D Row Agglomeration

Multipliers need not be broadcast horizontally, since any
given matrix row is contained entirely in only one process

But there is no parallelism in updating any given row

Vertical broadcasts still required to communicate each row
of matrix to processors below it for updating
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Coarse-Grain 1-D Row Parallel Algorithm

for k = 1 to n− 1
broadcast {akj : k ≤ j ≤ n}
for i ∈ myrows, i > k,

`ik = aik/akk
end
for j = k + 1 to n

for i ∈ myrows, i > k,
aij = aij − `ik akj

end
end

end

{ broadcast }

{ multipliers }

{ update }
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Performance Enhancements

Each processor becomes idle as soon as its last row and
column are completed

With block mapping, in which each processor holds
contiguous block of rows and columns, some processors
become idle long before overall computation is complete

Block mapping also yields unbalanced load, as computing
multipliers and updates requires successively less work
with increasing row and column numbers

Cyclic or reflection mapping improves both concurrency
and load balance
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Performance Enhancements

Performance can also be enhanced by overlapping
communication and computation

At step k, each processor completes updating its portion of
remaining unreduced submatrix before moving on to step
k + 1

Broadcast of each segment of row k + 1, and computation
and broadcast of each segment of multipliers for step k+ 1,
could be initiated as soon as relevant segments of row
k+ 1 and column k+ 1 have been updated by their owners,
before completing remainder of their updating for step k
This look-ahead strategy enables other processors to start
working on next step earlier than they otherwise could
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Execution Time for 1-D Agglomeration

With 1-D column agglomeration, each processor factorizes
panels of b columns, then broadcasts them to perform the
trailing matrix update
While work-efficient Wp = Θ(n3), the concurrency in
computational cost is constrained by panel factorization

Fp(n, b) = Θ((n/b)nb2 + n3/p)

so we need b < n/p to maintain Fp(n, b) = Θ(n3/p)

The overall execution time is given by

Tp(n, b) = Θ
(

(n/b)T bcast
p (nb) + γFp(n, b)

)
It is generally minimized by picking b = Θ(n/p)

Tp(n, b) = Θ(αp log p+ βn2 + γn3/p)
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Execution Time for 2-D Agglomeration

With 2-D agglomeration and block-cyclic mapping, a
processor factorizes a b× b diagonal block, broadcasts it to
a column and row of processors, which update the panels
and broadcast them to perform the trailing matrix updates

The computational cost is constrained by lack of
concurrency in the diagonal

Fp(n, b) = O(n3/p+ nb2 + n2b/
√
p)

The overall execution time is given by

Tp(n, b) = Θ
(

(n/b)(T bcast√
p (b2)+T bcast√

p (nb/
√
p))+γFp(n, b)

)
It is generally minimized by picking b = n/

√
p

Tp(n) = Tp(n, n/
√
p) = Θ(α

√
p log p+ βn2/

√
p+ γn3/p)
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Scalability for 2-D Agglomeration

Cannon’s algorithm for matrix multiplication (2-D
agglomeration), could achieve strong scaling speed-up
ps = O((γ/α)n2) and unconditional weak scaling
The SUMMA algorithm, which was based on broadcasts,
achieved slightly inferior scaling due to a Θ(log(p)) term on
the latency cost
The execution time of 2-D agglomeration for LU is the
same as of SUMMA, so the efficiency and scaling
characteristics are the same
On the other hand, it is not possible to achieve strong
scaling to O((γ/α)n3/ log(n)) processors as the depth of
the usual LU algorithm is D = n, meaning the maximum
speed-up is ps = Θ(maxp Sp) = O(Q1/D) = O(n2)
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Partial Pivoting

Row ordering of A is irrelevant in system of linear
equations

Partial pivoting takes rows in order of largest entry in
magnitude of leading column of remaining unreduced
matrix

This choice ensures that multipliers do not exceed 1 in
magnitude, which reduces amplification of rounding errors

In general, partial pivoting is required to ensure existence
and numerical stability of LU factorization
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Partial Pivoting

Partial pivoting yields factorization of form

PA = LU

where P is permutation matrix

If PA = LU , then system Ax = b becomes

PAx = LUx = Pb

which can be solved by forward-substitution in lower
triangular system Ly = Pb, followed by back-substitution
in upper triangular system Ux = y
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Parallel Partial Pivoting

Partial pivoting complicates parallel implementation of
Gaussian elimination and significantly affects potential
performance

With 2-D algorithm, pivot search is parallel but requires
communication within processor column (S = Ω(n log(p)))
and inhibits overlap

With 1-D column algorithm, pivot search requires no
communication but is purely serial

Once pivot is found, index of pivot row must be
communicated to other processors, and rows must be
explicitly or implicitly interchanged in each process
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Alternatives to Partial Pivoting

Because of negative effects of partial pivoting on parallel
performance, various alternatives have been proposed that
limit pivot search

tournament pivoting (perform tree of partial pivoting on
different subsets of matrix rows, selecting b at a time)
threshold pivoting (use local rows as pivots if the diagonal
entries are within threshold of column norm)
pairwise pivoting (eliminate n(n− 1)/2 entries by as many
2-by-2 transformations LiPi, where Li is unit-lower
triangular and Pi is a permutation matrix, applied to
appropriate row pairs)

Stability generally slightly worse in theory and for
particularly hard test-cases
Better stability without worrying about pivoting may be
achieved via QR factorization
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Communication vs. Memory Tradeoff

If explicit replication of storage is allowed, then lower
communication volume is possible

As with matrix multiplication, algorithms that leverage all
available memory to reduce communication cost to the
maximum extent possible

If sufficient memory is avaiable, then these algorithms can
achieve provably optimal communication
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