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Nonlinear Equations

Potential sources of parallelism in solving nonlinear equation
f(x) = 0 include

Evaluation of function f and its derivatives in parallel

Parallel implementation of linear algebra computations
(e.g., solving linear system in Newton-like methods)

Simultaneous exploration of different regions via multiple
starting points (e.g., if many solutions are sought or
convergence is difficult to achieve)
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Optimization

Sources of parallelism in optimization problems include

Evaluation of objective and constraint functions and their
derivatives in parallel

Parallel implementation of linear algebra computations
(e.g., solving linear system in Newton-like methods)

Simultaneous exploration of different regions via multiple
starting points (e.g., if global optimum is sought or
convergence is difficult to achieve)

Multi-directional searches in direct search methods

Decomposition methods for structured problems, such as
linear, quadratic, or separable programming
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Nonlinear Optimization Methods

Goal is to minimize objective function f(x)

Gradient-based (first-order) methods compute

x(s+1) = x(s) − α∇f(x(s))

Newton’s method (second-order) computes

x(s+1) = x(s) −Hf (x(s))−1∇f(x(s))

Alternating methods fix a subset of variables x1 at a time
and minimize (via one of above two methods)

g(s)(x2) = f

([
x
(s)
1

x2

])
Subgradient methods such as stochastic gradient descent,
assume f(x(s)) =

∑n
i=1 fi(x

(s)) and compute

x(s+1) = x(s) − η∇fi(x(s)) for i ∈ {1, · · · , n}
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Parallelism in Nonlinear Optimization

In gradient-based methods, parallelism is generally found
within calculation of ∇f(x(s)), line optimization (if any) to
compute α, and the vector sum x(s) − α∇f(x(s))

Newton’s method main source of parallelism is linear solve

Alternating methods often fix x1 so that g(s)(x2) may be
decomposed into multiple independent problems

g(s)(w) = g
(s)
1 (w1) + · · ·+ g

(s)
k (wk)

Subgradient methods exploit the fact that subgradients
may be independent, since ∇fi(x(s)) is generally mostly
zero and depends on subset of elements in x(s)

Approximate/randomized nature of subgradient methods
can permit chaotic/asynchronous optimization
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Optimization Case-Study: Matrix Completion

Given a subset of entries

Ω ⊆ {1, . . . ,m} × {1, . . . , n}

of the entries of matrix A ∈ Rm×n, seek rank-k approximation

argmin
W∈Rm×k,H∈Rn×k

∑
(i,j)∈Ω

(
aij −

∑
l

wilhjl︸ ︷︷ ︸
(A−WHT )ij

)2
+ λ(||W ||2F + ||H||2F )

Problems of these type studied in sparse approximation

Ω may be randomly selected sample subset

Methods for this problem are typical of numerical
optimization and machine learning
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Alternating Least Squares

Alternating least squares (ALS) fixes W and solves for H then
vice versa until convergence

Each step improves approximation, convergence to a
minimum expected given satisfactory starting guess

We have a quadratic optimization problem

argmin
W∈Rm×k

∑
(i,j)∈Ω

(
aij −

∑
l

wilhjl

)2
+ λ||W ||2F

The optimization problem is independent for rows of W

Letting wi = wi?, hi = hi?, Ωi = {j : (i, j) ∈ Ω}, seek

argmin
wi∈Rk

∑
j∈Ωi

(
aij −wih

T
j

)2
+ λ||wi||22
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ALS: Quadratic Optimization

Seek minimizer wi for quadratic vector equation

f(wi) =
∑
j∈Ωi

(
aij −wih

T
j

)2
+ λ||wi||2

Differentiating with respect to wi gives

∂f(wi)

∂wi
= 2

∑
j∈Ωi

hTj

(
wih

T
j − aij

)
+ 2λwi = 0

Rotating wih
T
j = hjw

T
i and defining G(i) =

∑
j∈Ωi

hTj hj ,

(G(i) + λI)wT
i =

∑
j∈Ωi

hTj aij

which is a k × k symmetric linear system of equations
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ALS: Iteration Cost

For updating each wi, ALS is dominated in cost by two steps

1 G(i) =
∑

j∈Ωi
hTj hj

dense matrix-matrix product

O(|Ωi|k2) work

logarithmic depth

2 Solve linear system with G(i) + λI

dense symmetric k × k linear solve

O(k3) work

typically O(k) depth

Can do these for all m rows of W independently
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Parallel ALS

Let each task optimize a row wi of W

Need to compute G(i) for each task

Specific subset of rows of H needed for each G(i)

Task execution is embarassingly parallel if all of H stored
on each processor
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Memory-Constrained Parallel ALS

May not have enough memory to replicate H on all processors

Communication required and pattern is data-dependent

Could rotate rows of H along a ring of processors

Each processor computes contributions to the G(i) it owns

Requires Θ(p) latency cost for each iteration of ALS
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Updating a Single Variable

Rather than whole rows wi solve for elements of W , recall

argmin
W∈Rm×k

∑
(i,j)∈Ω

(
aij −

∑
l

wilhjl

)2
+ λ||W ||2F

Coordinate descent finds the best replacement µ for wit

µ = argmin
µ

∑
j∈Ωi

(
aij − µhjt −

∑
l 6=t

wilhjl

)2
+ λµ2

The solution is given by

µ =

∑
j∈Ωi

hjt

(
aij −

∑
l 6=twilhjl

)
λ+

∑
j∈Ωi

h2
jt
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Coordinate Descent

For ∀(i, j) ∈ Ω compute elements rij of

R = A−WHT

so that we can optimize via

µ =

∑
j∈Ωi

hjt

(
aij −

∑
l 6=twilhjl

)
λ+

∑
j∈Ωi

h2
jt

=

∑
j∈Ωi

hjt

(
rij + withjt

)
λ+

∑
j∈Ωi

h2
jt

after which we can update R via

rij ← rij − (µ− wit)hjt ∀j ∈ Ωi

both using O(|Ωi|) operations
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Cyclic Coordinate Descent (CCD)

Updating wi costs O(|Ωi|k) operations with coordinate
descent rather than O(|Ωi|k2 + k3) operations with ALS

By solving for all of wi at once, ALS obtains a more
accurate solution than coordinate descent

Coordinate descent with different update orderings:

Cyclic coordinate descent (CCD) updates all columns of W
then all columns of H (ALS-like ordering)

CCD++ alternates between columns of W and H

All entries within a column can be updated concurrently
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Parallel CCD++

Yu, Hsieh, Si, and Dhillon 2013 propose using a row-blocked
layout of H and W

They keep track of a corresponding m/p and n/p rows and
columns of A and R on each processor (using twice the
minimal amount of memory)

Every column update in CCD++ is then fully parallelized,
but an allgather of each column is required to update R

The complexity of updating all of W and all of H is then

Tp(m,n, k) = Θ(kT allgather
p (m+ n) + γQ1(m,n, k)/p)

= O(αk log p+ β(m+ n)k + γ|Ω|k/p)
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Gradient-Based Update

ALS minimizes wi, gradient descent methods only improve it

Recall that we seek to minimize

f(wi) =
∑
j∈Ωi

(
aij −wih

T
j

)2
+ λ||wi||2

and use the partial derivative

∂f(wi)

∂wi
= 2

∑
j∈Ωi

hTj

(
wih

T
j −aij

)
+2λwi = 2

(
λwi−

∑
j∈Ωi

rijhj

)
Gradient descent method updates

wi = wi − η
∂f(wi)

∂wi

where parameter η is our step-size
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Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) performs fine-grained
updates based on a component of the gradient

Again the full gradient is

∂f(wi)

∂wi
= 2

(
λwi −

∑
j∈Ωi

rijhj

)
= 2

∑
j∈Ωi

λwi/|Ωi| − rijhj

SGD selects random (i, j) ∈ Ω and updates wi using hj

wi ← wi − η(λwi/|Ωi| − rijhj)

SGD then updates rij = aij −wT
i hj

Each update costs O(k) operations
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Asynchronous SGD

Parallelizing SGD is easy aside from ensuring concurrent
updates do not conflict

Asynchronous shared-memory implementations of SGD
are popular and achieve high performance

For sufficiently small step-size, inconsistencies among
updates (e.g. duplication) are not problematic statistically

Asynchronicity can slow down convergence
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Blocked SGD

Distributed blocking SGD introduces further considerations

Associate a task with updates on a block

Can define p× p grid of blocks of dimension m/p× n/p

Diagonal/superdiagonals/subdiagonals of blocks updated
independently, so p tasks can execute concurrently

Assuming Θ(|Ω|/p2) updates are performed on each block,
the execution time for |Ω| updates is

Tp(m,n, k) = Θ(αp log p+ βmin(m,n)k + γ|Ω|k/p)
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