CS 598: Communication Cost Analysis of Algorithms

Lecture 12: Bitonic sort revisited and single-source shortest path graph
algorithms

Edgar Solomonik
University of lllinois at Urbana-Champaign

October 3, 2016

Bitonic sequence as a circle

El

8]

’QOOQ *
:s ¢
- ® . o°
OO

Collecting the min/max into different subsequences

min .~
,“Max

HNEEEEEN

Any partition subdivides smaller/greater halves

min .~
,“Max

HNEEEEEN

Arranging the two halves into new circles

El
[]
6
B %
[3]

¢
%ot

Swapping opposites again

N EEEEEM

Continuing with bitonic merge recursively

N EEEEEM

Bitonic Sort

Bitonic merge

A bitonic sequence is any cyclic shift of the sequence
fio <+ <k >--vip-1}

each step of bitonic merge partitions the sequence into smaller and
greater sets of size n/2, both of which are bitonic sequences

@ each compare-and-swap acts on elements a distance of n/2 away

@ these pairings are unaffected by a cyclic shift

@ therefore, it suffices to consider swaps on the sequence

S={i< - <ix>ip1}

there exists | < k, such that the largest n/2 elements of S are the
subsequence {ij, ..., ijyn/2-1}

since every element is compared with one n/2 away, all of these will
be paired with an element outside of the subsequence

hence the elements of this subsequence are the larger elements in the
n/2 comparisons

any subset of a bitonic sequence is a bitonic sequence

Shortest paths in graphs

Given a connected graph G = (V/, E) and a weight function w : E — R
e find paths P = (v1,...,vs), vi € V, (vj, vi+1) € E, with min weight

s—1

W(P) = w((vis vi+1))

i=1
o we define the distance between u, v € V, d(u, v) as the minimal
weight W(P) of any path P = (u,...,v)in G
@ single-source shortest-paths (SSSP) computes d(s, v) from a source
s € V to all destinations v € V
@ all-pairs shortest-paths (APSP) computes d(u, v) from all sources
u € V to all destinations v € V

@ shortest paths from u can be constructed from distances, by
computing the predecessor(s) of each node v:
{x:d(u,x)+w(x,v)=d(u,v)}

Breadth first search (BFS)

Given an unweighted graph (w(e) =1 for all e € E), BFS computes SSSP
@ BFS is also a primitive in many other graph algorithms
@ a good way to think of BFS is as iterative computation of frontiers

@ the root vertex r is the first frontier, and each subsequent frontier is
connected to the previous

the frontiers are a disjoint partition of vertices

d
{Fi,....Fa}, R={r}, V=JF,
i=1
Fi = {V ve V\(F,'_l U F,'_Q),HU e Fi_q, (U, V) S E}

for each vertex u € F;, there is a path of i — 1 edges from r to u

therefore the unweighted distance d(r,u) =i—1ifue F;

Expressing BFS algebraically

BFS is repeated multiplication of a sparse matrix and a sparse vector
@ let the |V| = n vertex labels be unique numbers, so V = {1,..., n}
consider the adjacency matrix A, where A(i,j) =1if (i,j) € E
Q: if G is undirected what property would A satisfy?
A: A would be symmetric
we can think of a non-existent edge as an edge with infinite weight,
so A(i,j) =0 if (i,j) ¢ E
@ we represent each frontier F; as a vector f;, where f;(j) =i — 1 if
J € Fi and f;(j) = oo otherwise
@ so, if the root vertexis r=1, 1 =[0 oo --- o0
@ now, we can compute each frontier and tenstative distances D;, with
D, = f from the subsequent via

e Di(j) # o
fir1(j) = {mink(fi(k) + A(k,j)) : otherwise
and set Dj11(j) = min(D;(j), fi+1()))

T

SSSP in unweighted graphs ~ Semirings
Semirings

To express graph operations as matrix operations, we need to redefine the
elementwise operators

@ a semiring (S, ®, ®) is an algebraic structure

e it defines an additive operator @ and a multiplicative operator ® on
elements in set S

e both operators should have an identity

o the additive operator should be commutative and the multiplicative
operator should be distributive

o the additive operator need not have an inverse, which differentiates
semirings from rings

@ other algebraic structures, in particular monoids can make sense for graph
algorithms when combined with appropriate functions

@ a semiring induces corresponding matrix/vector operations

C=A®B— C(i,j)=A(i,j) ® B(i,j)

Z=X®Y = Z(i,j) = @x)@ Y (k,))

SSSP in unweighted graphs ~ Semirings

The tropical semiring

The tropical semiring (R U {co}, min, +) enables shortest path
computation
@ note that + is the multiplicative operator in the tropical semiring
@ Q: what are the additive and multiplicative identities of the tropical
semiring?
@ Acocoand 0
@ the tropical semiring allows us to compute frontier in BFS, recall

] : Di(j) # oo
fir1() =19 . N .
ming(fi(k) + A(k,j)) : otherwise
e perform xj11 = f; ® A to get xi+1(j) = mink(fi(k) + A(k,J)) then set

fra(j) = {OO : Di(j) # o0

xi+1(j) : otherwise
@ with unweighted graphs we could also choose do BFS with other
semirings

SSSP in unweighted graphs BFS analysis
BFS cost

Lets now analyze the cost of BFS
@ the number of operations needed to compute BFS is O(|E|), since
each edge is traversed once
@ the bandwidth cost is at least O(|E| - v/), since we need to read each
edge from memory to cache
o parallelizing BFS in shared or distributed memory can be challenging
e partitioning the graph could reduce communication costs, but is
generally more expensive than BFS
@ in shared memory, threads can branch and perform atomic updates or
do redundant work
e in distributed memory, it makes sense to use a 2D processor grid
distribution for A (the edges)
e the dominant cost is multiplication of sparse matrices with sparse
vectors
o if we are able to balance the work of the d (depth of G) SpMSpVs, we
obtain

Ters = O(dlog(P) - a+n/vVP - B+ |E|/P - (v +7))

SSSP in unweighted graphs BFS analysis

Load balancing by randomization

So how can we balance the work for arbitrary graphs?

@ randomly ordering the vertices should achieve load balance with high
probability
o balls-into-bins problem:
e place m balls randomly into k bins, what maximum load / is obtained
with high probability?
e | = m/k would be ideal, answer depends on ratio of m to k
o if m> klogk, we get | = O(m/k), in particular
I'=m/k+ O(y/mlog k/k)
o in other scenarios there can be (poly)logarithmic factors of imbalance

(less than O(min(log(m), log(k))))
e we will return to this problem in more depth in a subsequent lecture

SSSP in unweighted graphs BFS analysis

Load imbalance in BFS

What does the load balance of BFS depend on, given a 2D distribution
with randomized vertex ordering?
o if |F;| > v/Plog(P), we can expect the vertices in the frontier to be
balanced across columns of the processor grid
@ so when |F;| is small, we expect to have more load imbalance
@ we can argue that the distribution of edges (sparse matrix A) among
processors is load balanced by a similar argument
e given a uniform degree graph, we can assign each ball a constant
weight and think of bins as processor grid rows/columns

e variance of vertex degree would increase load imbalance, having some
fully connected vertices (few dense columns/rows in A) is a worst case

SSSP in unweighted graphs BFS analysis

Load imbalance in BFS for quickly growing frontiers

What might the load imbalance in BFS be for some typical graphs?
@ many “real-world” graphs have high vertex expansion, typically
defined as

h(G) = S 16(G, 5)I/15]

where 0(G, S) is the outer boundary of S in G (its also Fj_; U Fjy; if
S = F; and G is undirected)

0(G,S)={v:veV\S53JueS, (uv)ecE}

@ one can also measure expansion with respect to a subset of size s,
namely h(G,s) = minjs|—s [0(G, S)|

e if h(G) >2or h(G,s) > 2s then |F;| will grow geometrically with i

@ even if these conditions don't hold, |F;| may grow very quickly, for
instance in power-law graphs, which contain high-degree vertices

@ in such cases, parallel BFS would be load imbalanced when |F;| is
small, but the bandwidth costs will be dominated by processing the
larger frontiers

Short pause

Projects

Project is in total 60% of the course grade

o first proposal grade deferred, 10% of total grade or 1/6 of project
grade is proposal

@ 30-min presentation and project report need to be done by end of
semester
@ guidelines for stage 2 proposal (due Oct 19)

e project should be set into context with respect to at least 2 previous
work citations

e novelty of the proposed work should be discussed

e an ideal proposal should be the first ~2 pages of your project report:
problem statement, previous work, methodology

@ project report should additionally detail the completed work and
results (~5 pages)

SSSP in weighted graphs Graphs with nonnegative edge weights

Dijkstra’s algorithm

Lets now return to SSSP for weighted graphs
@ BFS is not generally correct, since it only considers paths with a
minimal number of edges
@ the classical solution for graphs with nonnegative edge weights is
Dijkstra’s algorithm
e visit the closest unvisited node and update distances by relaxing edges
connected to that node

e priority queue typically used to find closest node
e each edge relaxed once and queue modified once for each node, for a

cost of O(|E| + nlogn)
o Dijkstra’s algorithm has very little parallelism
@ expressed algebraically, it performs n — 1 SpMSpVs with a vector
containing a single nonzero

e A-stepping [Meyer, Sanders 2003] modifies Dijkstra to exploit more
parallelism, by relaxing edges of all nodes within a distance of A from
the visited nodes

SSSP in weighted graphs Graphs with arbitrary edge weights

Bellman-Ford algorithm

The Bellman-Ford algorithm computes shortest shortest paths in an
arbitrary graph

o if there are negative cycles the problem of computing distances is not
well-defined

@ Dijkstra’s algorithm is not correct in the presence of negative edges

e we cannot just visit each vertex once (“set labels”), we may always
detect a shorter path later

o the Bellman-Ford algorithm relaxes all edges (“updates labels™) in the
graph at every iteration

e for sequential execution, the edges are relaxed in some order

o for parallel execution we can think of an iteration as relaxing all
vertices simultaneously

e of course, we should avoid relaxing outgoing edges from nodes with
tentative distance (label) oo

o furthermore, we can avoid relaxing edges from nodes whose distance
was unchanged since the last set of relaxations

SSSP in weighted graphs Graphs with arbitrary edge weights

Bellman-Ford algorithm algebraically

At each iteration, we relax a subset of vertices (a frontier), and take the
next frontier to be the set of vertices with modified distance labels

, 00 - xi+1() = Di())
=fOA fia()=
i +0) {x;+1(j) : otherwise

and as in BFS, set Dj11(j) = min(Di()), fi+1(j))
For a worst case graph, every node appears in every frontier, for a cost of

Ter = O(hlog(P) - a+ hn/'P - B+ h|E|/P - (v + 7))

where h is the max number of edges in any shortest path, and assuming a
load balanced 2D layout of A

This is the cost of h SpMVs (sparse-matrix times dense vector) with |E|
nonzeros in the matrix, rather than d SpMSpVs, which gave the BFS cost

Ters = O(dlog(P) - o+ n/VP - B+ |E|/P - (v +7))

	Bitonic Sort
	SSSP in unweighted graphs
	Introduction
	Breadth First Search
	Semirings
	BFS analysis

	Administrative interlude
	SSSP in weighted graphs
	Graphs with nonnegative edge weights
	Graphs with arbitrary edge weights

