
CS 598: Communication Cost Analysis of Algorithms
Lecture 12: Bitonic sort revisited and single-source shortest path graph

algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 3, 2016

Bitonic Sort

Bitonic sequence as a circle

Bitonic Sort

Matching opposite pairs in the circle

Bitonic Sort

Swapping opposite pairs in the circle

Bitonic Sort

Collecting the min/max into different subsequences

Bitonic Sort

Any partition subdivides smaller/greater halves

Bitonic Sort

Arranging the two halves into new circles

Bitonic Sort

Swapping opposites again

Bitonic Sort

Continuing with bitonic merge recursively

Bitonic Sort

Bitonic merge

A bitonic sequence is any cyclic shift of the sequence
{i0 ≤ · · · ≤ ik ≥ · · · in−1}

each step of bitonic merge partitions the sequence into smaller and
greater sets of size n/2, both of which are bitonic sequences

each compare-and-swap acts on elements a distance of n/2 away

these pairings are unaffected by a cyclic shift

therefore, it suffices to consider swaps on the sequence
S = {i0 ≤ · · · ≤ ik ≥ · · · in−1}
there exists l ≤ k , such that the largest n/2 elements of S are the
subsequence {il , . . . , il+n/2−1}
since every element is compared with one n/2 away, all of these will
be paired with an element outside of the subsequence

hence the elements of this subsequence are the larger elements in the
n/2 comparisons

any subset of a bitonic sequence is a bitonic sequence

SSSP in unweighted graphs Introduction

Shortest paths in graphs

Given a connected graph G = (V ,E) and a weight function w : E → R
find paths P = (v1, . . . , vs), vi ∈ V , (vi , vi+1) ∈ E , with min weight

W (P) =
s−1∑
i=1

w((vi , vi+1))

we define the distance between u, v ∈ V , d(u, v) as the minimal
weight W (P) of any path P = (u, . . . , v) in G

single-source shortest-paths (SSSP) computes d(s, v) from a source
s ∈ V to all destinations v ∈ V

all-pairs shortest-paths (APSP) computes d(u, v) from all sources
u ∈ V to all destinations v ∈ V

shortest paths from u can be constructed from distances, by
computing the predecessor(s) of each node v :
{x : d(u, x) + w(x , v) = d(u, v)}

SSSP in unweighted graphs Breadth First Search

Breadth first search (BFS)

Given an unweighted graph (w(e) = 1 for all e ∈ E), BFS computes SSSP

BFS is also a primitive in many other graph algorithms

a good way to think of BFS is as iterative computation of frontiers

the root vertex r is the first frontier, and each subsequent frontier is
connected to the previous

the frontiers are a disjoint partition of vertices

{F1, . . . ,Fd}, F1 = {r}, V =
d⋃

i=1

Fi ,

Fi = {v : v ∈ V \ (Fi−1 ∪ Fi−2), ∃u ∈ Fi−1, (u, v) ∈ E}

for each vertex u ∈ Fi , there is a path of i − 1 edges from r to u

therefore the unweighted distance d(r , u) = i − 1 if u ∈ Fi

SSSP in unweighted graphs Breadth First Search

Expressing BFS algebraically

BFS is repeated multiplication of a sparse matrix and a sparse vector

let the |V | = n vertex labels be unique numbers, so V = {1, . . . , n}
consider the adjacency matrix A, where A(i , j) = 1 if (i , j) ∈ E
Q: if G is undirected what property would A satisfy?
A: A would be symmetric
we can think of a non-existent edge as an edge with infinite weight,
so A(i , j) =∞ if (i , j) /∈ E
we represent each frontier Fi as a vector fi , where fi (j) = i − 1 if
j ∈ Fi and fi (j) =∞ otherwise

so, if the root vertex is r = 1, f1 =
[
0 ∞ · · · ∞

]T
now, we can compute each frontier and tenstative distances Di , with
D1 = f1 from the subsequent via

fi+1(j) =

{
∞ : Di (j) 6=∞
mink(fi (k) + A(k , j)) : otherwise

and set Di+1(j) = min(Di (j), fi+1(j))

SSSP in unweighted graphs Semirings

Semirings

To express graph operations as matrix operations, we need to redefine the
elementwise operators

a semiring (S ,⊕,⊗) is an algebraic structure

it defines an additive operator ⊕ and a multiplicative operator ⊗ on
elements in set S
both operators should have an identity
the additive operator should be commutative and the multiplicative
operator should be distributive
the additive operator need not have an inverse, which differentiates
semirings from rings

other algebraic structures, in particular monoids can make sense for graph
algorithms when combined with appropriate functions

a semiring induces corresponding matrix/vector operations

C = A⊕ B → C (i , j) = A(i , j)⊕ B(i , j)

Z = X ⊗ Y → Z (i , j) =
n⊕

k=1

X (i , k)⊗ Y (k, j)

SSSP in unweighted graphs Semirings

The tropical semiring

The tropical semiring (R ∪ {∞},min,+) enables shortest path
computation

note that + is the multiplicative operator in the tropical semiring
Q: what are the additive and multiplicative identities of the tropical
semiring?
A: ∞ and 0
the tropical semiring allows us to compute frontier in BFS, recall

fi+1(j) =

{
∞ : Di (j) 6=∞
mink(fi (k) + A(k , j)) : otherwise

perform xi+1 = fi ⊗ A to get xi+1(j) = mink(fi (k) + A(k, j)) then set

fi+1(j) =

{
∞ : Di (j) 6=∞
xi+1(j) : otherwise

with unweighted graphs we could also choose do BFS with other
semirings

SSSP in unweighted graphs BFS analysis

BFS cost

Lets now analyze the cost of BFS

the number of operations needed to compute BFS is O(|E |), since
each edge is traversed once
the bandwidth cost is at least O(|E | · ν), since we need to read each
edge from memory to cache
parallelizing BFS in shared or distributed memory can be challenging

partitioning the graph could reduce communication costs, but is
generally more expensive than BFS
in shared memory, threads can branch and perform atomic updates or
do redundant work
in distributed memory, it makes sense to use a 2D processor grid
distribution for A (the edges)
the dominant cost is multiplication of sparse matrices with sparse
vectors
if we are able to balance the work of the d (depth of G) SpMSpVs, we
obtain

TBFS = O(d log(P) · α + n/
√
P · β + |E |/P · (ν + γ))

SSSP in unweighted graphs BFS analysis

Load balancing by randomization

So how can we balance the work for arbitrary graphs?

randomly ordering the vertices should achieve load balance with high
probability

balls-into-bins problem:
place m balls randomly into k bins, what maximum load l is obtained
with high probability?
l = m/k would be ideal, answer depends on ratio of m to k
if m > k log k , we get l = O(m/k), in particular
l = m/k + O(

√
m log k/k)

in other scenarios there can be (poly)logarithmic factors of imbalance
(less than O(min(log(m), log(k))))
we will return to this problem in more depth in a subsequent lecture

SSSP in unweighted graphs BFS analysis

Load imbalance in BFS

What does the load balance of BFS depend on, given a 2D distribution
with randomized vertex ordering?

if |Fi | >
√
P log(P), we can expect the vertices in the frontier to be

balanced across columns of the processor grid

so when |Fi | is small, we expect to have more load imbalance

we can argue that the distribution of edges (sparse matrix A) among
processors is load balanced by a similar argument

given a uniform degree graph, we can assign each ball a constant
weight and think of bins as processor grid rows/columns
variance of vertex degree would increase load imbalance, having some
fully connected vertices (few dense columns/rows in A) is a worst case

SSSP in unweighted graphs BFS analysis

Load imbalance in BFS for quickly growing frontiers

What might the load imbalance in BFS be for some typical graphs?

many “real-world” graphs have high vertex expansion, typically
defined as

h(G) = min
|S |≤n/2

|δ(G ,S)|/|S |

where δ(G ,S) is the outer boundary of S in G (its also Fi−1 ∪ Fi+1 if
S = Fi and G is undirected)

δ(G , S) = {v : v ∈ V \ S ,∃u ∈ S , (u, v) ∈ E}
one can also measure expansion with respect to a subset of size s,
namely h(G , s) = min|S |=s |δ(G ,S)|
if h(G) > 2 or h(G , s) ≥ 2s then |Fi | will grow geometrically with i
even if these conditions don’t hold, |Fi | may grow very quickly, for
instance in power-law graphs, which contain high-degree vertices
in such cases, parallel BFS would be load imbalanced when |Fi | is
small, but the bandwidth costs will be dominated by processing the
larger frontiers

Administrative interlude

Short pause

Administrative interlude

Projects

Project is in total 60% of the course grade

first proposal grade deferred, 10% of total grade or 1/6 of project
grade is proposal

30-min presentation and project report need to be done by end of
semester

guidelines for stage 2 proposal (due Oct 19)

project should be set into context with respect to at least 2 previous
work citations
novelty of the proposed work should be discussed
an ideal proposal should be the first ∼2 pages of your project report:
problem statement, previous work, methodology

project report should additionally detail the completed work and
results (∼5 pages)

SSSP in weighted graphs Graphs with nonnegative edge weights

Dijkstra’s algorithm

Lets now return to SSSP for weighted graphs

BFS is not generally correct, since it only considers paths with a
minimal number of edges

the classical solution for graphs with nonnegative edge weights is
Dijkstra’s algorithm

visit the closest unvisited node and update distances by relaxing edges
connected to that node
priority queue typically used to find closest node
each edge relaxed once and queue modified once for each node, for a
cost of O(|E |+ n log n)

Dijkstra’s algorithm has very little parallelism

expressed algebraically, it performs n − 1 SpMSpVs with a vector
containing a single nonzero

∆-stepping [Meyer, Sanders 2003] modifies Dijkstra to exploit more
parallelism, by relaxing edges of all nodes within a distance of ∆ from
the visited nodes

SSSP in weighted graphs Graphs with arbitrary edge weights

Bellman-Ford algorithm

The Bellman-Ford algorithm computes shortest shortest paths in an
arbitrary graph

if there are negative cycles the problem of computing distances is not
well-defined

Dijkstra’s algorithm is not correct in the presence of negative edges

we cannot just visit each vertex once (“set labels”), we may always
detect a shorter path later

the Bellman-Ford algorithm relaxes all edges (“updates labels”) in the
graph at every iteration

for sequential execution, the edges are relaxed in some order
for parallel execution we can think of an iteration as relaxing all
vertices simultaneously
of course, we should avoid relaxing outgoing edges from nodes with
tentative distance (label) ∞
furthermore, we can avoid relaxing edges from nodes whose distance
was unchanged since the last set of relaxations

SSSP in weighted graphs Graphs with arbitrary edge weights

Bellman-Ford algorithm algebraically

At each iteration, we relax a subset of vertices (a frontier), and take the
next frontier to be the set of vertices with modified distance labels

xi+1 = fi ⊗ A fi+1(j) =

{
∞ : xi+1(j) = Di (j)

xi+1(j) : otherwise

and as in BFS, set Di+1(j) = min(Di (j), fi+1(j))
For a worst case graph, every node appears in every frontier, for a cost of

TBF = O(h log(P) · α + hn/
√
P · β + h|E |/P · (ν + γ))

where h is the max number of edges in any shortest path, and assuming a
load balanced 2D layout of A
This is the cost of h SpMVs (sparse-matrix times dense vector) with |E |
nonzeros in the matrix, rather than d SpMSpVs, which gave the BFS cost

TBFS = O(d log(P) · α + n/
√
P · β + |E |/P · (ν + γ))

	Bitonic Sort
	SSSP in unweighted graphs
	Introduction
	Breadth First Search
	Semirings
	BFS analysis

	Administrative interlude
	SSSP in weighted graphs
	Graphs with nonnegative edge weights
	Graphs with arbitrary edge weights

