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Parallel sample/mergesort Defining the algorithm

Communication-optimal sorting

The best complexity achievable by a parallel comparison-based sort is

Tsort(n,P,H) = Ω
(n log2(n)

P
· γ +

n log2(n)

P log2(
√

n/P)
· β +

log2(n)

log2(
√
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· α
)

recall log2(n)/ log2(
√

n/P) = log√
n/P

(n)

R. Cole’s parallel mergesort (1988) achieves this for P = Θ(n)

M.T. Goodrich (1999) provides a mixed mergesort/samplesort that
attains the cost for arbitrary P

Cole’s construction uses a pipelined binary tree, Goodrich extends it
to an s-ary tree with s =

√
n/P
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Sampling and merging samples

The parallel mergesort algorithm is defined in a bottom-up way

we first place and sort subsequences of size s2 = n/P on P leaves of
the s-ary tree
for each tree node u, we will merge the s subsequences assigned to its
children π(u)

L(u) = sort

( ⋃
v∈π(u)

L(v)

)
each tree node will distribute its subsequence over s more processors
than those of its children
since the tree is of height logs(P), the root node will end with n
sorted elements distributed over P processors
at tree node with height h will merge s subsequences of size sh, using
a regular sample of total size sh

Q: sounds simple enough... so why do we need to pipeline?
A: merging the regular subsamples is almost as hard as the merge
itself, so we will construct them gradually
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The short life of an exponentially-growing tree node

Nodes in the s-ary tree are either waiting, growing, or full
node u at the start of iteration t:

has a subset of its target subsequence Lt(u) ⊆ L(u)
is waiting if Lt(u) = ∅
is growing if Lt(u) 6= ∅ and Lt(u) 6= L(u)
is full if it has its target subsequence Lt(u) = L(u)

leaves are full at iteration 0

each tree node u waits up to iteration t, the first iteration at which
its children have a subsequence of size s2, then collects a sample of
size s from each and merges sequentially, so |Lt(u)| = s2

if u is growing at iteration t, then it uses Lt(u) as a sample to merge

Lt+1(u) = sort

( ⋃
v∈π(u)

R(|Lt(u)|, Lt(v))

)
where R(k,U) extracts a regular sample of size k from U

growing nodes grow by a factor of s, i.e. |Lt+1(u)| = s|Lt(u)|
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Communication-optimal sort [Cole 1988], [Goodrich 1999]
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Sampling guarantees

At every step of the algorithm, we merge s sequences of size st using a
sample of size st , with st−1 processors

we show can partition the sequences such that each processor gets no
more than 2s2 = 2n/P elements

there are at most s elements in a sequence between two consecutive
sample elements selected from that sequence

this is nontrivial, but holds as a consequence of a regular sample of st

elements being a regular sample of a regular sample of st+1 elements

we select st−1 − 1 splitters from sorted sample of size st

if there are kj elements from subsequence j between splitter i and
i + 1, it has at most (kj + 1)s elements between these splitters

we can bound total
∑s

j=1 kj = s

the total number of elements in each interval is bounded by∑s
j=1(kj + 1)s ≤ 2s2
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Cost analysis of Cole/Goodrich parallel mergesort

There are logs(P) levels in the tree

a parent become full 3 iterations after its children become full, so the
algorithm terminates in 3 logs(P) iterations

the amount of work done at each step for growing parent is a factor
of s less than the child, and there are s less nodes at the tree level

therefore, the work and memory usage decrease geometrically up from
the highest level that is full

processing every node requires O(s2 · β) and as much memory from
every processor involved

therefore, each iteration can be executed with O(s2 · β)
communication and as much memory

Wsort(n,P) = O(s2 logs(n) · β) = O(n log√
n/P

(n)/P · β)



Parallel sample/mergesort Analyzing the algorithm

Short pause
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The Parallel Random Access Machine (PRAM)

The PRAM model is perhaps the most popular traditional parallelism
model and is still in use today

use a maximal number of processors suitable to compute the
algorithm in a minimal number of parallel steps (depth)

e.g. Cole’s mergesort uses O(n) processors to sort in O(log(n)) steps

all processors can access a global memory
EREW (exclusive read exclusive write) - processors cannot access the
same memory locations in a parallel step
CREW (concurrent read exclusive write) - processors can read but not
write to the same memory locations in a parallel step
CRCW (concurrent read concurrent write) - processors can read and
write to the same memory locations in a parallel step
for CRCW model need to define how writes are arbitrated (common,
random, priority)

Brent’s Lemma: an EREW PRAM algorithm that uses P processors
and s steps can be computed with in P/k processors in sk steps
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Tree contraction

Consider an algebraic or boolean expression, e.g.

T =
(

(a + b) · (c + d)
)
·
(

(e + f + g) · (h + i)
)
· (j + k)

the problem can be represented as a rooted tree

computing T corresponds to tree contraction

we can use tree contraction for important tasks such as tree
isomorphism and subexpression elimination in dataflow analysis

a naive algorithm would recursively evaluate the n nodes in the tree,
starting with the leaves

Q: how many parallel steps would such an algorithm require in the
worst case?

A: O(n) if the tree has height O(n)
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Parallel tree contraction

Miller and Reif (1989) provide a famous PRAM algorithm for the problem

their algorithm consists of rake and compress steps

rake evaluates all the leaves of the tree

compress contracts all chains in the tree

a chain is any connected subtree where each node has only one child
compress removes every other node in the chain

Q: can you see why O(log(n)) rake and compress steps would
contract the tree?

A: any new tree branch increases the number of leaves by one
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How to compress in parallel?

It is nontrivial to identify which nodes in a chain are odd or even

Miller and Reif provide deterministic and randomized solutions

the deterministic solution splits chains using pointer chasing

we start with every child pointing to its parent
if parent has one child, point to grandparent (if exists)
this splits each chain into two, in one of the chains, a node that
participated in compress now has no child
we proceed ensuring that this node is never evaluated
PRAM requires O(n) processors and O(log(n)) steps

the randomized solution deletes a subset of nodes in any chain

randomly assign 1 or 0 to each node in the chain
pointer chase from every node marked with 0 whose parent and child
are marked with 1
if s nodes are part of chains, we delete Ω(s) nodes without breaking
chains
PRAM requires O(n/ log(n)) processors and O(log(n)) steps
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Randomized Miller and Reif algorithm in BSP

So, how do we do tree contraction in the BSP model?

perform O(s) accesses and pointer chases needed in a PRAM step
using O(1) BSP supersteps and O(s/P) communication

with each step of rake/compress we decrease the number of nodes (s)
geometrically

need to assume the accesses/nodes are load balanced (can randomly
permute initially)

the communication cost then goes down geometrically

after O(log(P)) steps, the size of the tree is O(n/P), so we can
collect all nodes on one processor and contract the tree locally

the total cost is then

O(n/P · β + log(P) · α)
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