
CS 598: Communication Cost Analysis of Algorithms
Lecture 18: Avoiding communication in iterative solvers

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 24, 2016

Iterative stencil computations Brief review

Stencils

Lets consider approximation of the second derivative of a function u(x)

we can derive an approximation from a truncated Taylor expansion
with step size h

d2u

dx2
(x) ≈ u(x − h)− 2u(x) + u(x + h)

h2

such approximations of derivatives can be represented by a stencil

which is applied for every node in the mesh
the application of this 1D 3-point stencil to n grid-nodes, can be done
via SpMV with a tridiagonal matrix, like

d2u
dx2 (h)

...
d2u
dx2 (nh)

 =
1

h2

−2 1

1
. . .

. . .
. . .

 u(h)

...
u(nh)

Iterative stencil computations Avoiding synchronizations

Lets start with a 1D 2-point stencil

Normally, synchronize between every stencil application

Iterative stencil computations Avoiding synchronizations

In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before synchronizing

Iterative stencil computations Avoiding synchronizations

In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before synchronizing

Iterative stencil computations Avoiding synchronizations

In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before synchronizing

Iterative stencil computations Avoiding synchronizations

In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before synchronizing

Iterative stencil computations Avoiding synchronizations

Analysis of in-time blocking for 1D mesh

For 1D mesh its a tasty free lunch

lets consider t steps, and execute s without synchronization

we are constrained by s ≤ n/P

bring down latency cost by a factor of s, for t = Θ(n), we improve
latency cost from O(n · α) to O(P · α)

Q: can we improve memory-bandwidth cost via in-time blocking?

A: yes, but it depends on whether we need to output all vectors or
just the last one we compute

in the latter case, we can improve reuse by factor of Θ(max(s,H))

Iterative stencil computations Avoiding synchronizations

Analysis of in-time blocking for dD mesh

For dD mesh, there is more complexity

again consider t steps, and execute s without synchronization

we are constrained by s ≤ (n/P)1/d

otherwise we need to do asymptotically more computation and
interprocessor communication

Iterative stencil computations Avoiding synchronizations

Analysis of in-time blocking for dD mesh

For dD mesh with t total steps, s = Θ((n/P)1/d) without syncs.

for t = Θ(n1/d) we lower latency cost to Θ(t/s) = Θ(P1/d)

Q: if we only need to output the final vector, by how much can we
improve memory bandwidth cost with s = Θ((n/P)1/d)?

A: Θ(H1/d), by doing O(H) loads and stores for computation
volumes of size H1/d × · · · × H1/d

Iterative stencil computations Avoiding synchronizations

Analysis of in-time blocking for dD mesh contd.

Lets now consider the full cost of t applications with s steps at a time

recall from last lecture the cost of the one-at-a-time SpMV approach

t · TSpMV-d(n, d ,P) = O

(
tn

P
· ν + t

(n
P

)(d−1)/d
· β + t · α

)
we now obtain a cost

TCA-St(n, d ,P, t, s) = O

(
tn

min(s,H1/d)P
· ν

+

[
t
(n
P

)(d−1)/d
+ tsd−1

]
· β +

t

s
· α
)

when we pick s = (n/P)1/d , we obtain

TCA-St(n, d ,P, t, (n/P)1/d) = O

(
tn

H1/dP
· ν

+ t
(n
P

)(d−1)/d
· β +

t

(n/P)1/d
· α
)

Iterative stencil computations Avoiding synchronizations

Short pause

Challenges and further ideas for iterative methods Improving cache-efficiency

In-cache computing

So far we have assumed that the problem does not fit in cache

so we had H < n/P or H < m/P if the m nonzeros in the matrix are
not implicit

if H > n/P, we can keep data cache-resident between SpMVs

we get better cache complexity without reducing synchronizations

the memory-bandwidth cost would be proportional to interprocessor
communication and insignificant if ν < β

we can also leverage cache-residency also when H > m/P

idea: block-cyclic layout - subdivide mesh in n/b chunks so H > b/P

Challenges and further ideas for iterative methods Improving cache-efficiency

Global block-cyclic partitioning

Challenges and further ideas for iterative methods Improving cache-efficiency

Global block-cyclic partitioning schedule

Challenges and further ideas for iterative methods Improving cache-efficiency

Global block-cyclic partitioning analysis

Maintain cache residency by selecting chunks of size b with H > b/P

can reduce memory bandwidth cost by up to O(H1/d) or down to
interprocessor communication cost

however, we incur n/b more synchronizations

incur more interprocessor communication depending on H, finer
partitioning ⇒ larger total boundary

algorithm is a good idea when kH = n/P for small k

Challenges and further ideas for iterative methods Challenges

Problems with partitioning real iterative methods

In-time blocking is hard for real applications

we already noted the interprocessor communication overhead

determining import region is expensive for irregular mesh/graph

some iterative methods require computing a norm after every SpMV

other iterative methods require orthogonalization after every SpMV

there is ongoing research on modifying iterative methods such as
biconjugate gradient (which is not orthogonalized) to allow in-time
blocking while preserving convergence guarantees

preconditioning and higher order methods, which make information
propagate through the mesh faster make in-time blocking more
expensive, as it works better for slower movement of information

Challenges and further ideas for iterative methods Challenges

Asynchronous iterative methods

Idea: avoid explicit synchronization by using latest-available values to
apply stencil

i.e. mix Gauss-Seidel / Bellman-Ford iterations arbitrarily

avoid ‘explicit’ synchronization, but still send the same number of
messages on a parallel system

sensible in the presence of noise, soft-failures, or load-imbalance

possible when on a shared memory-system or with one-sided
communication on a distributed system

benefit not reflected on most parallelism/communication models

affects stability, past and ongoing research on designing asynchronous
methods and bounding error

Challenges and further ideas for iterative methods Challenges

Multigrid

We can reduce communication in iterative methods the same way as
computation

improve convergence rate - lower number of SpMVs

multigrid methods leverage a hierarchy of grids to accelerate
convergence

perform smoothing on fine grid (e.g. stencil applications)
restrict residual to coarser grid
interpolate correction back to fine grid
perform smoothing again

asymptotic view: restriction/interpolation as hard as smoothing

grid hierarchy construction can be done ‘offline’

for detailed analysis, see recent paper: “Ballard, Siefert, and Hu,
2016. Reducing communication costs for sparse matrix multiplication
within algebraic multigrid”

	Iterative stencil computations
	Brief review
	Avoiding synchronizations

	Challenges and further ideas for iterative methods
	Improving cache-efficiency
	Challenges

