
CS 598: Communication Cost Analysis of Algorithms
Lecture 19: Preconditioning via incomplete LU

Edgar Solomonik

University of Illinois at Urbana-Champaign

October 26, 2016

Preconditioning Introduction

Preconditioning for iterative solvers

To accelerate convergence, we can try to find preconditioner M and solve

M−1Ax = M−1b

want M−1 to be close to A−1 or to improve spectral radius of A

at the same time need M−1 to be easy to apply, iterative methods,
e.g. Richardson iteration will ‘multiply’ by M−1 at every iteration

xi+1 = xi − γiM−1(Axi − b)

generally, we want M to be structured, e.g. diagonal, block-diagonal,
or factorized into sparse triangular matrices with not much more
nonzeros than A

there are lots of preconditioning techniques, often specialized for
specific applications and matrices

Preconditioning Incomplete LU (ILU)

Incomplete LU (ILU) factorization

ILU is a popular choice of preconditioner with interesting algorithmic
characteristics

define S ∈ N2 to be a sparsity mask and compute L,U on S

for instance ILU[0]: (i , j) ∈ S iff Aij 6= 0

Gaussian elimination on A, compute Lij and Uij only if (i , j) ∈ S

given [L(0),U(0)]← ILU[0](A), our preconditioner will be
M = L(0)U(0) ≈ A

to multiply a vector by M−1, we need two sparse triangular solves

popular variant ILU[1], (i , j) ∈ S if ∃k , L(0)ik U
(0)
kj 6= 0 (sparser than

plain LU, since we do not get additional fill from multiplying fill)

ILU can break down (divide by zero) even when normal LU would not

lets first study the cost of ILU[0], then consider ILU[l]

Preconditioning ILU[0]

Row/column ordering in ILU[0]

Like in sparse Cholesky/LU, ordering of rows/columns affects ILU[0]

fill will not change for ILU[0], but quality of solution does

affects dependency structure and parallelism

for instance, consider 3D level sets Vi = {(x , y , z) : x + y + z = i}
we can compute in the order V0,V1,V2, . . ., propagating information
at each step

or we can compute odds V0,V2,V4, . . . at the same time and evens
V1,V3,V5, . . . at the same time

latter approach has more parallelism, former may produce a much
better preconditioner

ordering of rows chosen also restricts reorderings for subsequent
iterative method

Q: could we eliminate all odd and then all even level sets
independently in sparse Cholesky?

A: no, eliminating odd level sets would connect the even level sets

Preconditioning ILU[0]

Natural level set ordering: cube DAG

Sources: Tiskin 2002, ”Bulk Synchronous Parallel Gaussian Elimination”,
Google image search for “cube DAG”, boingboing.net

Preconditioning ILU[0]

Cost analysis of cube DAG computation

Consider n1/3 × n1/3 × n1/3 cube DAG

each vertex depends on neighbors with lower coordinates

subdivide into blocks of size n1/3/
√
P × n1/3/

√
P × n1/3/

√
P

wavefront of depth O(
√
P) with O(P) blocks in each level set

cost of each wavefront is

O(n/P3/2 · γ + n2/3/P · β + α)

therefore the total cost is

TILU[0]-cube(n,P) = O(n/P · γ + n2/3/
√
P · β +

√
P · α)

Q: is this more or less than than LU of n1/3 × n1/3 dense matrix?

A: the computation cost is the same, but more communication and
synchronization required (above equal to 2D LU cost and is optimal
for cube DAG, 3D LU cost is less)

Preconditioning ILU[l]

Advanced ILU schemes

Lets now consider ILU[l]

let S(A) be the sparsity mask for matrix A

[L(l),U(l)] =ILU[l](A) uses sparsity mark Sl where

Sl = S
(
L(l−j)U(j−1) + L(j−1)U(l−j)

)
which is the same for any j ∈ [1, l]

different interpretation of ILU[l]

label each entry of Lij ,Uij with ζij
if (i , j) ∈ S(A), ζij = 0
when a Schur complement update would yield a new entry of fill
Lik · Ukj let ζij = ζik + ζkj + 1
create entry only if ζij ≤ l

Preconditioning ILU[l]

Advanced ILU[l] in terms of paths

Let A be the adjacency matrix of an unweighted direct graph G

we refer to length of a path as the unweighted distance (#edges)

let D[l](G) be the matrix of shortest distances in G that are of length
less than or equal to m

the ILU[l] mask for A is Sl = S(D[l](G))

fill path: a new edge will be added between two vertices in G if there
exists a path

of any length for complete sparse Cholesky/LU
of length l for ILU[l]

we start with an undirected graph corresponding to our mesh

forming the adjacency matrix puts an ordering on the vertices
this ordering turns the mesh into a DAG
ILU[l] adds new edges for each path of length l in the DAG

Preconditioning ILU[l]

Cost analysis of computing ILU[l]

Generally, ILU[l] has a space complexity overhead proportional to the
number of paths of length l in G

on a d-dimensional mesh ordered lexicographically, this is Θ(ld), for a
total amount of space of O(nld)
Q: how many times would we update each entry of the Schur
complement in ILU[l] for this mesh?
A: O(ld), since this is the number of vertices (rows/cols) on path of
length less than l between a pair of vertices
the total computation cost is therefore F = O(nl2d)
note that we never have a path of length greater than l = O(n1/3) in
the cube DAG
so long as l ≤ n1/3/

√
P, d = 3 we can use a wavefront like ILU[0]

TILU[l]-cube(n,P) = O(l6n/P · γ + l3n2/3/
√
P · β +

√
P · α)

for l > n1/3/
√
P, we might want to have layers of processors doing

updates ahead of the wavefront (3D parallelization)

Preconditioning ILU[l]

Cost analysis of applying ILU[l]

Once we start running our preconditioned method, we need to apply the
ILU[l] decomposition

each time it is a triangular solve

the amount of work in a triangular solve is as much as SpMV, so
O(nld)

however, the operations are interdependent and not as parallelizable

we can use a wavefront approach for d = 3, as when computing ILU

TILU[l]-cube-app(n,P) = O(l3n/P · γ + ln2/3/
√
P · β +

√
P · α)

so long as l ≤ n1/3/
√
P, since the ghost-zone we need for each block

of each wavefront has dimensions roughly l × n1/3/
√
P × n1/3/

√
P

Preconditioning ILU[l]

Short pause

Further ideas in ILU Dynamic ILU

Threshold-based sparsification by magnitude

The sparsity mask in ILU[l] may not be the best one

we might do better by keeping L and U entries that are relatively
large in magnitude

for instance, drop (set to zero) any entry |Lij |, |Uij | < τ

however, in a right-looking LU algorithm with Schur complement
updates, we would need to use extra memory to form potential
nonzeros before we know to drop them

Q: how can we do LU sequentially with the above drop criterion using
no extra memory?

A: use a left-looking algorithm, performing all updates to a given
entry all at once and decide whether to drop immediately

each such update is an SpMSpV (sparse matrix times sparse vector)

more parallelism and less communication at the cost of a bit more
memory may be obtained by updating a few columns via SpMSpM
(sparse matrix times sparse matrix)

Further ideas in ILU Partitioning

ILU preconditioning techniques

Applying ILU preconditioner M = LU,

M−1v = U−1L−1v

requires triangular solves

need to apply at every iteration of iterative scheme

each can be almost as expensive as computing ILU

basic idea behind domain decomposition: precondition within
subdomains

M−1
DD =

U−1
1 L−1

1 0 · · ·

0
. . . 0

... 0 U−1
P L−1

P

given subdivision into P domains, ILU and triangular solves can be
completed in parallel with no synchronization or communication cost

Jacobi-preconditioning: overlap diagonal blocks to achieve better
preconditioner

Further ideas in ILU Partitioning

Basic domain decomposition

A block-diagonal preconditioner is not generally robust

its important to consider boundaries between partitions

we can classify each partition as having interior and boundary nodes

with a careful ordering we e can then solve for the interior nodes
separately from the boundary nodes

we still need a global ordering among processors

solving for the boundary nodes needs to be done in order for ILU
computation and application

by defining different global orderings, for instance via graph coloring,
its possible to allow subdomains to operate simultaneously, but
generally with some loss of quality in the preconditioning

	Preconditioning
	Introduction
	Incomplete LU (ILU)
	ILU[0]
	ILU[l]

	Further ideas in ILU
	Dynamic ILU
	Partitioning

