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FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION∗
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Abstract. This paper presents a new fine-grained parallel algorithm for computing an incom-
plete LU factorization. All nonzeros in the incomplete factors can be computed in parallel and
asynchronously, using one or more sweeps that iteratively improve the accuracy of the factorization.
Unlike existing parallel algorithms, the amount of parallelism is large irrespective of the ordering
of the matrix, and matrix ordering can be used to enhance the accuracy of the factorization rather
than to increase parallelism. Numerical tests show that very few sweeps are needed to construct a
factorization that is an effective preconditioner.

Key words. preconditioning, parallel computing, incomplete factorization

AMS subject classifications. 65Y05, 65F08, 65F50

DOI. 10.1137/140968896

1. Introduction. The parallel computation of incomplete LU (ILU) factoriza-
tions has been a subject of much interest since the 1980s. Although ILU factorizations
have been very useful as preconditioners in sequential environments, they have been
less useful in parallel environments where more parallelizable algorithms are available.
In this paper we propose a completely new algorithm for computing ILU factoriza-
tions in parallel. The algorithm is easy to parallelize and has much more parallelism
than existing approaches. Each nonzero of the incomplete factors L and U can be
computed in parallel with an asynchronous iterative method, starting with an initial
guess. A feature of the algorithm is that, unlike existing approaches, it does not rely
on reordering the matrix in order to enhance parallelism. Reordering can instead be
used to enhance convergence of the solver.

The new algorithm addresses highly parallel environments, such as Intel Xeon Phi,
where there may be more processing cores than the parallelism available in existing
methods. In this paper we show the potential advantages of the new algorithm on
current hardware, but the algorithm is expected to be even more advantageous than
existing algorithms on future hardware with even more cores.

For very large sparse matrices, the best preconditioner is unlikely to be an ILU
factorization of the entire matrix. Instead, a multilevel domain decomposition may
be preferred, with ILU used in the subdomain solver on each node, especially if it
is difficult to exploit the physics of a problem. Thus we focus on parallelism on a
single node, which generally involves shared memory and is often called “fine-grained”
parallelism.

When using ILU preconditioners in a parallel environment, the sparse triangular
solves must also be parallelized. This has also been the subject of much research, and
many options are available. In order not to neglect this important point, although it
is not our focus, we briefly summarize some options at the end of this paper.
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C170 EDMOND CHOW AND AFTAB PATEL

Background and related work. Given a sparse matrix A, an incomplete fac-
torization LU ≈ A can be computed by a Gaussian elimination process where nonzeros
or fill-in are only permitted in specified locations, (i, j) of L and U [34]. We define
the sparsity pattern S to be the set of matrix locations where nonzeros are allowed,
that is, (i, j) ∈ S if lij in matrix L is permitted to be nonzero (in the case i ≥ j) or
if uij in matrix U is permitted to be nonzero (in the case i ≤ j). The set S should
always include the nonzero locations on the diagonal of the L and U factors so that
these factors are nonsingular.

Algorithm 1, from [45], is an example of the conventional procedure for com-
puting an incomplete factorization with sparsity pattern S, with S computed either
beforehand or dynamically. The values aij are entries in A, where (i, j) ∈ S. The
factorization is computed “in-place.” At the end of the algorithm, the U factor is
stored in the upper triangular part of A, and the L factor is unit lower triangular
with its strictly lower triangular part stored in the strictly lower triangular part of A.
Parallelization is challenging because of the sequential nature of Gaussian elimination
and because the factors L and U remain very sparse and lack the large, dense blocks
that arise in a complete LU factorization.

Algorithm 1: Conventional ILU Factorization.

1 for i = 2 to n do
2 for k = 1 to i− 1 and (i, k) ∈ S do
3 aik = aik/akk
4 for j = k + 1 to n and (i, j) ∈ S do
5 aij = aij − aikakj
6 end

7 end

8 end

Previous work on parallel incomplete factorizations depends on finding rows of
the matrix that can be eliminated in parallel. Reordering the matrix can transform
the problem into a related one that has more parallelism, although reordering can
also affect the accuracy of the resulting factorization. The subject has a long history,
beginning in the late 1980s.

The first parallel ILU algorithms were designed for problems on regular grids,
where sets of grid points, organized in diagonal lines in two dimensions or hyperplanes
in three dimensions, could be eliminated in parallel (e.g., [50, 27]). The generalization
of this to irregular problems is an idea often called level scheduling, originally used
for solving sparse triangular systems, to determine which rows or columns that, due
to sparsity, can be eliminated in parallel (e.g., [21, 40, 18, 13, 17]).

To enhance parallelism, it is common to use multicolor ordering to reorder the
rows and columns of the matrix. The nodes corresponding to the graph of the matrix
are colored such that no two adjacent nodes share the same color. Then the matrix
is reordered such that like colors are ordered together. Nodes corresponding to the
same color can then be eliminated in parallel; see, e.g., [26]. The advantage of using
multicolor ordering is that there is much more parallelism. A disadvantage, however,
is that multicolor orderings lead to ILU factorizations that are not as good compared
to when other orderings are used; see, e.g., [41, 14, 15, 11, 12, 5]. A more serious
disadvantage of using reordering to enhance parallelism is that it takes away the ability
to reorder a matrix to enhance solver convergence. Especially for difficult problems,
such orderings promoting convergence are essential for efficiency and robustness; see,
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PARALLEL INCOMPLETE LU FACTORIZATION C171

e.g., [14, 10, 5]. On fine-grained parallel hardware, however, multicolor reordering is
one of the few options and has recently been used for parallel ILU implementations
on GPUs [30, 22].

Yet another approach for developing parallel ILU factorizations is to use do-
main decomposition which is suitable for distributed memory implementations. Here,
the parallelism is coarse-grained. The graph corresponding to the matrix is first
partitioned into subdomains; then interior nodes of each subdomain are ordered
contiguously, subdomain after subdomain, followed by the interface nodes ordered
at the end. The incomplete factorization is computed in parallel for each subdo-
main. Various techniques are then used to eliminate the interface nodes in parallel
[31, 28, 53, 23, 24, 32]. There may be limited parallelism for the ILU factorization
within each subdomain, but various approximations and other parallel techniques may
be used; see, e.g., [35, 1, 43]. This approach also relies on reordering the matrix, but
there are no negative effects of reordering when the subdomains are large enough.

The parallel ILU factorization presented in this paper is different from all of these
previous approaches. First, parallelism is very fine-grained: individual entries, rather
than rows, of the factorization can be computed in parallel, using an iterative algo-
rithm. Second, reorderings are not used to create fine-grained parallelism, and thus
any ordering can be used, including those that enhance convergence of the precondi-
tioned iterative method.

2. New parallel ILU algorithm.

2.1. Reformulation of ILU. The new parallel ILU algorithm is based on the
sometimes overlooked property that

(2.1) (LU)ij = aij , (i, j) ∈ S,

where (LU)ij denotes the (i, j) entry of the ILU factorization of the matrix with
entries aij ; see [45, Prop. 10.4]. In other words, the factorization is exact on the
sparsity pattern S. The original ILU methods for finite-difference problems were
interpreted this way [9, 52, 38] before they were recognized as a form of Gaussian
elimination and long before they were called incomplete factorizations [34].

Today, an incomplete factorization is generally computed by a procedure analo-
gous to Gaussian elimination. However, any procedure that produces a factorization
with the above property is an incomplete factorization equivalent to one computed
by incomplete Gaussian elimination. The new fine-grained parallel algorithm inter-
prets an ILU factorization as, instead of a Gaussian elimination process, a problem of
computing unknowns lij and uij which are the entries of the ILU factorization, using
property (2.1) as constraints.

Formally, the unknowns to be computed are

lij , i > j, (i, j) ∈ S,

uij , i ≤ j, (i, j) ∈ S.

We use the normalization that L has a unit diagonal, and thus the diagonal entries of
L do not need to be computed. Therefore, the total number of unknowns is |S|, the
number of elements in the sparsity pattern S. To determine these |S| unknowns, we
use the constraints (2.1), which can be written as

(2.2)

min(i,j)∑
k=1

likukj = aij , (i, j) ∈ S,
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C172 EDMOND CHOW AND AFTAB PATEL

with the definition that lij and uij for (i, j) not in S are equal to zero. Each constraint
can be associated with an element of S, and therefore there are |S| constraints. Thus
we have a problem of solving for |S| unknowns with |S| equations.

To be sure, these equations are nonlinear (more precisely, they are bilinear), and
there are more equations than the number of rows in A. However, there are several
potential advantages to computing an ILU factorization this way: (1) the equations
can be solved in parallel with fine-grained parallelism; (2) the equations do not need
to be solved very accurately to produce a good ILU preconditioner; and (3) we often
have a good initial guess for the solution.

We note in passing that there exist other preconditioners that are constructed by
minimizing an objective by solving a set of equations, e.g., factorized sparse approx-
imate inverse (FSAI) preconditioners [29]. FSAI preconditioners differ in that the
equations to be solved are linear and decouple naturally into independent problems,
whereas the equations in our case are generally fully coupled.

2.2. Solution of constraint equations. We now discuss the parallel solution
of the system of equations (2.2). Although these equations are nonlinear, we can write
an explicit formula for each unknown in terms of the other unknowns. In particular,
the equation corresponding to (i, j) can give an explicit formula for lij (if i > j) or
uij (if i ≤ j):

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
,(2.3)

uij = aij −
i−1∑
k=1

likukj .(2.4)

The second of these equations does not need a divide by lii because lii = 1.
The above equations are in the form x = G(x), where x is a vector containing

the unknowns lij and uij . It is now natural to try to solve these equations via a
fixed-point iteration,

(2.5) x(p+1) = G(x(p)), p = 0, 1, . . . ,

with an initial guess x(0). Each component of the new iterate x(p+1) can be computed
in parallel.

There is a lot of structure in G. When the unknowns lij and uij are viewed as
entries of matrices L and U , the formula (2.3) or (2.4) for unknown (i, j) depends only
on other unknowns in row i of L to the left of j, and in column j of U above i. This
is depicted in Figure 1, where the L and U factors are shown superimposed into one
matrix. Thus, an explicit procedure for solving the nonlinear equations exactly is to
solve for the unknowns using (2.3) and (2.4) in a specific order: unknowns in the first
row of U are solved (which depend on no other unknowns), followed by those in the
first column of L; this is followed by unknowns in the second row of U and the second
column of L, etc.; see Figure 2. This ordering is just one of many topological orderings
of the unknowns that could be used to solve the nonlinear equations via successive
substitution. Another ordering is simply the ordering of the unknowns from left to
right and top to bottom (or top to bottom and from left to right) if the unknowns
were placed in a sparse matrix. These orderings could be called “Gaussian elimination
orderings,” since they are the orderings in which the lij and uij are produced in
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PARALLEL INCOMPLETE LU FACTORIZATION C173

Fig. 1. Formula for unknown at (i, j) (dark square) depends on other unknowns left of (i, j)
in L and above (i, j) in U (shaded regions). The left figure shows dependence for a lower triangular
unknown; the right figure shows dependence for an upper triangular unknown.

Fig. 2. Illustration of a Gaussian elimination ordering. Entries (i, j) ∈ S in darker rows and
columns are ordered before those in lighter rows. Ordering the entries from left to right and top to
bottom is another Gaussian elimination ordering.

various forms of Gaussian elimination. To be clear, these orderings are not related to
the reordering of the rows and columns of the matrix A, which we seek to avoid.

Different ways of performing the fixed-point iteration (2.5) in parallel give rise
to slightly different methods. If the components of x(k+1) are computed in paral-
lel with only “old” values x, then the method corresponds to the nonlinear Jacobi
method [39]. At the other extreme, if the components of x(k+1) are computed in se-
quence with the latest values of x, then we have the nonlinear Gauss–Seidel method.
If this latter method visits the equations in Gaussian elimination order, then non-
linear Gauss–Seidel solves the equations in a single sweep, and the solution process
corresponds exactly to performing a conventional ILU factorization. In practice, a
parallel implementation may perform something between these two extremes.

2.3. Matrix scaling and initial guess. Given a matrix A, we diagonally scale
the matrix so that it has a unit diagonal before applying the new ILU algorithm.
Assuming that the diagonal of A is positive, the scaled matrix is DAD, where D
is the appropriate diagonal scaling matrix. The motivation for this scaling will be
explained in section 3.3. Experimentally, we found that this scaling is essential for
convergence for many problems, and we use this scaling for all the problems tested
in this paper. In the remainder of this paper, we assume that A has been diagonally
scaled.

The new ILU algorithm requires an initial guess for the unknowns to begin the
fixed-point iterations. Given a matrix A, a simple initial guess is

(L(0))ij = (A)ij , i > j, (i, j) ∈ S,

(U (0))ij = (A)ij , i ≤ j, (i, j) ∈ S;
(2.6)

that is, we use elements from the strictly lower triangular part of A for the initial
guess for L and elements from the upper triangular part of A for the initial guess
for U . Outside the sparsity pattern S, the elements are zero. Since A has a unit
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C174 EDMOND CHOW AND AFTAB PATEL

diagonal, U (0) also has a unit diagonal. We refer to this as the standard initial guess.
Other options are also possible. For example, we can scale the rows of L(0) and
the columns of U (0) such that the nonlinear constraint equations corresponding to
diagonal elements of A are exactly satisfied. We refer to this as the modified initial
guess.

In many applications, one needs to solve with a sequence of related matrices—for
example, one at each time step of a dynamical simulation. In these cases, if the matrix
sparsity pattern does not change, the ILU factorization of a matrix at one time step
can be used as an initial guess for the factorization at the next time step. We can
view this as updating the ILU factorization as the matrix changes. The availability
of good initial guesses can make the new ILU algorithm very effective.

2.4. Algorithms and implementation. The new parallel algorithm for com-
puting an ILU factorization is shown as pseudocode in Algorithm 2. Each fixed-point
iteration updating all the unknowns is called a “sweep.” Compared to the conven-
tional algorithm shown in Algorithm 1, the new algorithm is very different and is
actually simpler.

Algorithm 2: Fine-Grained Parallel Incomplete Factorization.

1 Set unknowns lij and uij to initial values
2 for sweep = 1, 2, . . . until convergence do
3 parallel for (i, j) ∈ S do
4 if i > j then

5 lij =
(
aij −∑j−1

k=1 likukj

)
/ujj

6 else

7 uij = aij −∑i−1
k=1 likukj

8 end

9 end

10 end

The algorithm is parallelized across the elements of S. Given p compute threads,
the set S is partitioned into p parts, one for each thread. The threads run in parallel,
updating the components of the vector of unknowns, x, asynchronously. Thus the
latest values of x are used in the updates. The work associated with each unknown
is unequal but is known in advance (generally more work for larger i and j), and the
load for each thread can be balanced.

In our specific implementation, we use OpenMP to parallelize the loop across
S. This leads to a very simple implementation for us to test the convergence of the
parallel algorithm. We used dynamic scheduling of the loop iterations, with a chunk
size of 4096. Dynamic scheduling is necessary to balance the load. The large chunk
size is necessary for reducing loop overhead. The large chunk size also has the effect of
reducing false sharing, i.e., writes to a cache line are generally performed by the same
thread. The performance of the algorithm may be improved by statically assigning
loop iterations to threads, especially if small problems are of interest.

To develop an efficient implementation of Algorithm 2, it is essential that sparsity
be considered when computing (2.3) and (2.4). The inner products in these equations
involve rows of L and columns of U . Thus L should be stored in row-major order
(using compressed sparse row (CSR) format), and U should be stored in column-major
order (using compressed sparse column (CSC) format). An inner product with a row
of L and a column of U involves two sparse vectors, and this inner product should be
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computed in “sparse-sparse” mode, i.e., using the fact that both operands are sparse.

We note that, as for any asynchronous method, there is no way to guarantee
that Algorithm 2 always computes exactly the same factorization for the same inputs.
The expectation is that the factorization is nearly the same for the same inputs, but
differences in the convergence of the factorization may be much greater across different
hardware.

When the matrix A is symmetric positive definite (SPD), the algorithm need
only compute one of the triangular factors. Specifically, an incomplete Cholesky (IC)
factorization computes UTU ≈ A, where U is upper triangular. Algorithm 3 shows
the pseudocode for this case, where we have used uij to denote the entries of U and
SU to denote an upper triangular sparsity pattern.

Algorithm 3: Symmetric Fine-Grained Parallel Incomplete Factorization.

1 Set unknowns uij to initial values
2 for sweep = 1, 2, . . . until convergence do
3 parallel for (i, j) ∈ SU do

4 s = aij −∑i−1
k=1 ukiukj

5 if i �= j then
6 uij = s/uii

7 else
8 uii =

√
s

9 end

10 end

11 end

In the above algorithms, we assume that the sparsity patterns S are given. Pat-
terns corresponding to level-based ILU factorizations can be computed in parallel [25].
Our approach does not preclude the possibility of using patterns that change dynam-
ically as the nonlinear equations are being solved, i.e., threshold-based ILU factor-
izations, much like dynamic approaches for choosing the sparsity pattern for sparse
approximate inverse preconditioners [19]. We leave this latter point for future work.

3. Convergence theory. Given the constraint equations x = G(x), where G :
D ⊆ R

m → R
m, we consider the convergence of the synchronous fixed-point method

(3.1) x(p+1) = G(x(p)), p = 0, 1, . . . ,

and its asynchronous variant. Our analysis focuses on properties of the constraint
function, G(x), and its Jacobian, G′(x).

Recall that each equation in G(x) and each unknown in x is associated with one
of the m elements in the sparsity pattern S. We begin here by specifying an ordering
of the equations in G(x) and the unknowns in x.

Definition 3.1. An ordering of the elements of a sparsity pattern S is a bijective
function g : S → {1, . . . ,m}, where m is the number of elements in S.

Given an ordering, the vector of unknowns x is

(3.2) xg(i,j) =

{
lij if i > j,

uij if i ≤ j,
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where (i, j) ∈ S, and the function G(x) is

(3.3) Gg(i,j)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

xg(j,j)

(
aij −

∑
1≤k≤j−1

(i,k),(k,j)∈S

xg(i,k)xg(k,j)

)
if i > j,

aij −
∑

1≤k≤i−1
(i,k),(k,j)∈S

xg(i,k)xg(k,j) if i ≤ j,

where aij is a nonzero of matrix A ∈ R
n×n. Because of the xg(j,j) terms in the

denominators of the i > j case, the domain of definition of G is the set

(3.4) D = {x ∈ R
m | xg(j,j) �= 0, 1 ≤ j ≤ n}.

The function G(x) contains two types of equations, as shown in (3.3). Simi-
larly, the Jacobian G′(x) contains two types of matrix rows. For a row where i > j
(corresponding to the unknown lij), the partial derivatives are

(3.5)

∂Gg(i,j)

∂ukj
= − lik

ujj
, k < j,

∂Gg(i,j)

∂lik
= −ukj

ujj
, k < j,

∂Gg(i,j)

∂ujj
= − 1

u2
jj

(
aij −

j−1∑
k=1

likukj

)
.

For a row where i ≤ j (corresponding to the unknown uij), the partial derivatives are

(3.6)

∂Gg(i,j)

∂lik
= −ukj , k < i,

∂Gg(i,j)

∂ukj
= −lik, k < i.

In the above, we have used lik instead of xg(i,k), etc., to simplify the notation. Note
that the Jacobian is usually very sparse.

3.1. Local convergence. To prove local convergence of the synchronous iter-
ation (3.1), we need to prove that G(x) is F-differentiable at a fixed point x∗ and
that the spectral radius ρ(G′(x∗)) < 1 (Ostrowski’s theorem [39]). All the partial
derivatives are well defined and continuous on the domain of G(x), and thus G(x) is
F-differentiable in particular at a fixed point x∗. To prove the result on the spectral
radius, we will in fact prove ρ(G′(x)) = 0 ∀x in the domain of G.

Definition 3.2. Consider the partial ordering of the m elements of S,

(1, 1 : n) ∩ S ≺ (2 : n, 1) ∩ S ≺ · · · ≺ (k, k : n) ∩ S ≺ (k + 1 : n, k) ∩ S ≺ · · · ≺ (n, n),

where MATLAB-like indexing notation is used. An ordering consistent with the above
partial ordering is an example of a Gaussian elimination (GE) ordering. (See section
2.2.)

Theorem 3.3. The function G(x), with a GE ordering of its equations and
unknowns, has strictly lower triangular form; that is,

Gk(x) = Gk(x1, . . . , xk−1)
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for 1 ≤ k ≤ m.

The proof is immediate from Figures 1 and 2 and from noticing that the com-
ponent Gk(x) does not contain the unknown xk. Intuitively, the conventional ILU
algorithm computes the unknowns in GE order.

A corollary of the above theorem is that the Jacobian G′(x) has strictly lower
triangular structure—in particular, it has all zeros on the diagonal. Thus the Jacobian
has spectral radius zero for all x in the domain of G(x). Thus we have proven the
following theorem.

Theorem 3.4. If G : D → R
m is given by (3.3) and has a fixed point x∗ in the

interior of D, then x∗ is a point of attraction of the iteration (3.1).

The local convergence of the asynchronous variant of the iteration can be proven
similarly. In asynchronous iterations, each component of x is computed by one of the
processors. These components are updated using whatever values of components of x
are available at the time. We make the standard mild assumptions about asynchronous
iterations [16, Def. 2.2]; see also [4]. To prove local convergence of the asynchronous
iteration, we appeal to Theorem 4.4 in [16] (see also [8, 48]). To satisfy the conditions
of this theorem, we need, as before, the F-differentiability of G(x) at a fixed point
x∗. This has already been shown. We also need to show that ρ(|G′(x∗)|) < 1. This
is trivial since |G′(x)| also has spectral radius zero for all x in the domain of G(x).
Thus we have the following result.

Theorem 3.5. If G : D → R
m is given by (3.3) and has a fixed point x∗ in the

interior of D, then x∗ is a point of attraction of the asynchronous iteration.

3.2. Global convergence. The strictly lower triangular structure of G(x) also
leads to simple global convergence results (finite termination) of the synchronous and
asynchronous iterations. Although they are not practically useful, we state them for
completeness. We begin with the following result.

Theorem 3.6. Given G : D → R
m defined by (3.3), if a fixed point of G exists,

then it is unique.

Proof. Without loss of generality, assume that G and x are in GE ordering. Due
to the strictly lower triangular form of G, the fixed point x∗ can be computed by
deterministically solving the equations x = G(x) via successive substitution. The
process completes if no xg(j,j), 1 ≤ j ≤ m, is set to zero. If any xg(j,j) is set to zero,
then there is no fixed point of G.

We define a modified Jacobi-type method as identical to the iteration (3.1) except
that when a component xg(j,j) equals zero, it is replaced with an arbitrary finite value.
We have the following result.

Theorem 3.7. If G : D → R
m has a fixed point x∗, then the modified Jacobi-type

method converges to x∗ in at most m iterations from any initial guess x(0).

Proof. Without loss of generality, we assume that G and x are in GE ordering.

At the first iteration, x
(1)
1 has its exact value because it does not depend on any

unknowns. Also, x
(p)
1 = x∗

1 ∀p ≥ 1. Due to the strictly lower triangular structure of

G, x
(p)
2 = x∗

2 ∀p ≥ 2 because x
(p)
2 depends only on x

(p)
1 and the latter is exact for

p ≥ 1. Continuing this argument, we have x
(p)
m = x∗

m ∀p ≥ m. Thus x(m) = x∗. Note
that we have made no assumptions about the initial guess x(0).

This theorem and proof may be easily extended to the asynchronous iteration.
The asynchronous iteration also terminates after a finite number of steps because,
assuming GE ordering, once xk achieves its exact value, xk+1 will achieve its exact
value the next time it is updated. The base x1 achieves its exact value the first time
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it is updated.

We remark that although we have finite termination, in floating point arithmetic,
the iterates may diverge and overflow before reaching the finite termination condition.

Given G : D → R
m in GE ordering, we define a Gauss–Seidel-type method, given

by

(3.7) x
(p+1)
k = G(x

(p+1)
1 , . . . , x

(p+1)
k−1 , x

(p)
k , . . . , x(p)

m ), p = 0, 1, . . . .

The strictly lower triangular structure means that the Gauss–Seidel-type method has
the form

x
(p+1)
k = G(x

(p+1)
1 , . . . , x

(p+1)
k−1 ), p = 0, 1, . . . .

Trivially, if G is in GE ordering and a fixed point exists, then the Gauss–Seidel-type
method (3.7) converges to x∗ in one iteration (one sweep). The initial guess x(0) is
not utilized.

3.3. Contraction mapping property. The function G : D ⊆ R
m → R

m is a
contraction on D if there is a constant α < 1 such that

‖G(x)−G(y)‖ ≤ α‖x− y‖

∀x, y ∈ D; see, e.g., [39]. Such a constant can be found if D is convex and there is a
constant α < 1 satisfying ‖G′(x)‖ ≤ α ∀x ∈ D. Although for G defined by (3.3) the
domain is not convex, the norm of the Jacobian is still suggestive of whether or not
the corresponding fixed-point iteration will converge. We analyze this norm in this
section. We note in advance that for a given matrix A, it is difficult to guarantee that
‖G′(x)‖ < 1 ∀x ∈ D. For notation, recall that the components of x are lij and uij as
defined in (3.2).

Intuitively, for the norm of the Jacobian to be small, the partial derivatives (3.5)
and (3.6) should be small (in magnitude), meaning ujj should be large, and lij and
uij for i �= j should be small. This suggests that the new ILU algorithm should be
effective for matrices A that are diagonally dominant, and that there is a danger of
nonconvergence for matrices that are far from diagonally dominant. This motivates
us to test nondiagonally dominant problems later in this paper.

It is possible for certain rows and columns of the matrix A to be scaled so that
some partial derivatives are very large compared to others. To try to balance the size
of the partial derivatives, we symmetrically scale the matrix A to have a unit diagonal
before we apply the new ILU algorithm. This explains the matrix scaling described
in section 2.3.

We derive expressions for the 1-norm of the Jacobian, which has simpler form than
the ∞-norm. In this section, let L̃ denote the strictly lower triangular sparse matrix
with nonzeros corresponding to the unknowns lij . Let Ũ be defined analogously. For
simplicity, we assume that the unknowns ujj = 1 for 1 ≤ j ≤ n, which is the case for
the standard initial guess for the fixed-point iterations. Also in this section, instead
of G′(x), we will write G′(L̃, Ũ).

Theorem 3.8. Given a matrix A and G defined in (3.3), the 1-norm of the
Jacobian is bounded as

‖G′(L̃, Ũ)‖1 ≤ max(‖Ũ‖∞, ‖L̃‖1, ‖R̃L∗‖1),
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where R̃L∗ is the strictly lower triangular part of R̃ = A− T̃ , where the matrix T̃ is

(T̃ )ij =

{
(L̃Ũ)ij , (i, j) ∈ S,

0 otherwise.

See Appendix A for the proof, which is straightforward. For certain structured
matrices, this theorem simplifies, and we can obtain an exact expression for the norm.

Theorem 3.9. If A is a 5-point or 7-point finite difference matrix, and if L̃ (Ũ)
has sparsity pattern equal to the strictly lower (upper) triangular part of A, then for
G defined in (3.3),

‖G′(L̃, Ũ)‖1 = max(‖L̃‖max, ‖Ũ‖max, ‖AL∗‖1),

where AL∗ is the strictly lower triangular part of A and ‖ ·‖max denotes the maximum
absolute value among the entries in the matrix.

See Appendix B for the proof. As an example of the application of Theorem
3.9, any diagonally dominant 5-point or 7-point finite-difference matrix has Jacobian
1-norm with value less than 1 when the Jacobian is evaluated at the standard initial
guess. Further, for the 5-point or 7-point centered-difference discretization of the
Laplacian (in two dimensions or three dimensions, respectively), the Jacobian 1-norm
has value 0.5 at the standard initial guess. This result is independent of the number
of mesh points used in the discretization. (We assume that these matrices have been
diagonally scaled.) Experimentally, using synchronous iterations (3.1), the 1-norm of
the Jacobian for a 5-point Laplacian on a 10×10 mesh remains less than 1, increasing
monotonically from 0.5 at the initial guess to about 0.686 at convergence.

4. Experimental results. Tests with the new parallel incomplete factorization
algorithm are presented in this section. The main question is whether or not the L and
U factors converge, and how many sweeps are required for convergence to an effective
preconditioner as a function of the number of threads used in the computation.

The test platform is an Intel Xeon Phi coprocessor with 61 cores running at 1.09
GHz. Each core supports four-way simultaneous multithreading.

Convergence of the nonlinear equations can be measured by the 1-norm of the
residual,

(4.1)
∑

(i,j)∈S

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ ,
which we call the “nonlinear residual norm.” Recall that all lij and uij for (i, j)
not in S are equal to zero. For an SPD problem where only one triangular factor is
computed, the sum above is taken over the nonzeros of the triangular factor.

We evaluate the factorizations produced by the new incomplete factorization al-
gorithm by using them as preconditioners in the iterative solution of linear systems.
Thus our key measure of the quality of the factorization is the solver iteration count.
The convergence of these linear iterations should not be confused with the convergence
of the factorization in the new algorithm. We continue to use the term “sweep” to
mean a fixed-point iteration of the new algorithm. Each variable is updated a number
of times equal to the number of sweeps.
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C180 EDMOND CHOW AND AFTAB PATEL

4.1. Convergence of the algorithm. For the first test of the convergence of
the new incomplete factorization algorithm, we used a matrix from the finite ele-
ment discretization of the Laplacian on a square (two-dimensional (2D)) domain with
Dirichlet boundary conditions using linear triangular elements. The matrix contains
203,841 rows and 1,407,811 nonzeros. The rows and columns of the matrix were
ordered using reverse Cuthill–McKee (RCM) ordering, which is known to be the pre-
ferred ordering to use for incomplete factorizations with this type of matrix [14].

Incomplete factorizations for this matrix were constructed with the new symmet-
ric incomplete factorization algorithm (Algorithm 3), also called incomplete Cholesky
(IC), using the modified initial guess. Three different sparsity patterns S were used,
corresponding to level 0, level 1, and level 2 IC factorizations. Higher level factor-
izations contain more nonzeros and are more accurate approximations to the original
matrix. The numbers of nonzeros in the upper triangular incomplete factors for these
three patterns are 805,826, 1,008,929, and 1,402,741, respectively. The factorizations
were used as preconditioners for the PCG algorithm for solving linear systems with
the test matrix and a random right-hand side with components uniformly distributed
in [−0.5, 0.5]. The stopping criterion threshold was 10−6.

Figure 3 plots the solver iteration counts for the three cases (levels 0, 1, and 2) as
a function of the number of threads used to construct the factorizations. We test the
factorization after 1, 2, and 3 fixed-point iteration sweeps. When a single thread is
used, the solver iteration count agrees with the iteration count when a conventional
IC factorization is used. (This is because the factorization is computed exactly since
GE ordering of the unknowns is used; see the end of section 3.2.) Then, as the number
of threads for computing the factorization increases, the solver iteration count also
increases. However, the solver iteration count plateaus very quickly; after about 20
or more threads, no additional degradation is observed, and this was verified up to
240 threads. This suggests that it is possible to use a very large number of threads
with the new algorithm.

As more sweeps are applied, the solver iteration counts decrease, showing that
the L and U factors are indeed converging. A very positive observation is that even
with one or two sweeps, an effective preconditioner is constructed. For a single sweep,
we cannot expect that the L and U factors have converged numerically, but they are
accurate enough to be good preconditioners.

We now compare the results for different incomplete factorization levels. Natu-
rally, higher level factorizations lead to lower solver iteration counts. However, the
degradation in solver iteration counts as the number of threads is increased is worse
for higher level factorizations. In IC(0) after one sweep, the solver iteration count
ranges from 297 for one thread to 318 for 60 threads. In IC(2), the iteration count
ranges from 126 to 222. These effects, however, are mild and do not preclude the use
of higher level factorizations.

For levels 0, 1, and 2, the timings for one sweep using one thread were 0.189,
0.257, and 0.410 seconds, respectively. For 60 threads, the speed-ups over one thread
were 42.4, 44.7, and 48.8, respectively. Since the convergence of the new incomplete
factorization algorithm is impacted by parallelism, the importance of these timing
results is that they confirm that the factorizations were computed in a highly parallel
fashion.

Results using 240 threads for the above problem are shown in Table 1, showing
the nonlinear residual norm as a function of the number of sweeps. As expected, these
norms decrease as the number of sweeps is increased. A more important observation,
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Fig. 3. PCG solver iteration counts for a 2D finite element Laplacian problem for (top) level
0, (center) level 1, and (bottom) level 2 factorizations. In the unpreconditioned case, 1223 iterations
are required for convergence. For the initial guess L and U factors (0 sweeps), 404 iterations are
required for convergence.

Table 1

Nonlinear and ILU residual norms for a 2D finite element Laplacian problem, using 240 threads.
Zero sweeps denotes using the initial guess, and IC denotes the exact incomplete Cholesky factor-
ization.

Level 0 Level 1 Level 2
PCG nonlin ILU PCG nonlin ILU PCG nonlin ILU

Sweeps iter resid resid iter resid resid iter resid resid
0 404 1.7e+04 41.1350 404 2.3e+04 41.1350 404 2.3e+04 41.1350
1 318 3.8e+03 32.7491 256 5.7e+03 18.7110 206 7.0e+03 17.3239
2 301 9.7e+02 32.1707 207 8.6e+02 12.4703 158 1.5e+03 6.7618
3 298 1.7e+02 32.1117 193 1.8e+02 12.3845 132 4.8e+02 5.8985
4 297 2.8e+01 32.1524 187 4.6e+01 12.4139 127 1.6e+02 5.8555
5 297 4.4e+00 32.1613 186 1.4e+01 12.4230 126 6.5e+01 5.8706
IC 297 0 32.1629 185 0 12.4272 126 0 5.8894

however, is that the nonlinear residuals are large, meaning that the L and U factors
have not converged numerically although the solver iteration counts are essentially
the same as those of the exact factorization. This shows that a fully converged factor-
ization is not necessary for preconditioning. The table also shows the “ILU residual
norm,” defined as ‖A− LU‖F , for the values of L and U after each sweep. For SPD
problems, the ILU residual norm is well correlated to the convergence of the precondi-
tioned iterative solver [14]. (For simplicity, we retain the name “ILU residual norm”
although the factorization is symmetric.) This measure of convergence, however, is
costly to compute, and we use it only for diagnostic purposes. We observe that the
ILU residual norm appears to converge very quickly (to about three significant digits),
corresponding to little further improvement in PCG iteration count.

4.2. Nonsymmetric, nondiagonally dominant problems. We now test the
convergence of the new incomplete factorization algorithm on more challenging ma-
trices: matrices that are far from being diagonally dominant. Consider the finite
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difference discretization of the 2D convection-diffusion problem

−
(
∂2u

∂x2
+

∂2u

∂y2

)
+ β

(
∂exyu

∂x
+

∂e−xyu

∂y

)
= g

on a square domain [0, 1]× [0, 1] with Dirichlet boundary conditions. The derivatives
are discretized with centered differences. The parameter β parameterizes the strength
of the convection terms. As β is increased, the matrix becomes more nonsymmetric.

A regular mesh of size 450×450 (on the interior of the domain) was used, leading to
matrices with 202,500 rows and 1,010,700 nonzeros. Large values of β lead to matrices
that are not diagonally dominant and that are challenging for iterative methods. Such
nondiagonally dominant problems have been used extensively as test problems for
iterative methods and preconditioners; see, e.g., [6].

We generated two test matrices—for β = 1500 and 3000. After symmetrically
scaling the matrices such that the diagonal entries are all ones, the average sum of
the absolute values of the entries of each row are 2.76 and 4.50, for β = 1500 and
3000, respectively. Thus the two matrices are far from being diagonally dominant.

These problems can be challenging to solve. Without preconditioning, the two
problems required 1211 and 1301 solver iterations for convergence, using GMRES(50),
with a relative residual norm stopping tolerance of 10−6. In the natural or RCM or-
dering, the level 0 ILU factorization produces factors that are unstable; i.e., triangular
solves with U are unstable, or, equivalently, ‖U−1‖ is large. Benzi, Szyld, and Van
Duin [6] recommend using minimum degree ordering for these problems. In our tests,
the SYMAMD ordering (as implemented in MATLAB) combined with a level 0 ILU
preconditioner for the β = 1500 problem required 690 solver iterations.

The level 1 ILU factorization with RCM ordering for these problems, however,
produces stable factors, and solver convergence required fewer than 70 iterations for
the β = 3000 problem. Thus we tested level 1 ILU factorizations and used RCM
orderings for these nondiagonally dominant matrices. The level 1 sparsity patterns
have 808,201 nonzeros for each of the L and U factors.

Table 2 shows results for the convection-diffusion problem with β = 1500. The
standard initial guess was used for generating the factorizations. From the solver
iteration counts, we observe that even for this nondiagonally dominant problem, the
number of sweeps required to produce a useful preconditioner is very small. After a
single sweep, a factorization is produced that happens to be a better preconditioner
than that produced by the conventional ILU algorithm. (This is due to the fact that
the incomplete factorization for a given sparsity pattern is not guaranteed to be the
optimal preconditioner with that pattern.) After three sweeps, for all numbers of
threads, the factorization is equivalent to the conventional factorization in terms of
solver iteration counts.

Table 2 also shows the corresponding nonlinear residual norms (expression (4.1)
computed after each sweep). We observe that the nonlinear residuals decrease with
increasing numbers of sweeps, and they tend to be larger for higher thread counts.
Again, the nonlinear residuals are large, although the solver iteration counts are com-
parable to those of the exact factorization.

To further understand the convergence of the new ILU algorithm, we consider the
effect of increasing the average size of the off-diagonal entries in the matrix. We use
the convection-diffusion matrix with β = 3000 for this purpose, with results shown in
Table 3. The new ILU algorithm now appears to converge more slowly; a single sweep
no longer produces as good a preconditioner. For a single sweep, the degradation with
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Table 2

Solver iteration counts and nonlinear residuals (in units of 103) for the convection-diffusion
problem with β = 1500. Results shown are averaged over three trials.

Solver iterations Nonlinear residual norm

No. of Number of sweeps Number of sweeps
threads 1 2 3 1 2 3

1 30.0 30.0 30.0 1.3e-14 9.6e-15 9.6e-15
2 23.3 30.0 30.0 5.70 0.184 0.0035
4 22.3 30.0 30.0 10.48 0.746 0.0388
8 23.7 30.7 30.0 12.43 0.966 0.0821
14 24.0 31.0 30.0 13.03 1.114 0.1047
20 24.0 31.0 30.0 13.31 1.159 0.1110
30 24.0 31.0 30.0 13.32 1.161 0.1094
40 24.0 31.0 30.0 13.34 1.166 0.1137
50 24.0 31.0 30.0 13.45 1.178 0.1147
60 24.0 31.0 30.0 13.41 1.172 0.1145

number of threads is also very pronounced. Thus the convergence of the new ILU
factorization is affected by the degree of diagonal dominance in the matrix. Overall,
however, the new ILU algorithm is still able to compute a good preconditioner after
a very small number of sweeps, even for this very nondiagonally dominant problem.
Table 4 shows the nonlinear residual for the β = 3000 problem. We observe that
the nonlinear residual decreases monotonically with additional sweeps, although the
solver iteration counts for this problem do not.

We note that the initial guesses (corresponding to zero sweeps) for these two
nonsymmetric problems are unstable and cause GMRES(50) to diverge.

Table 3

Solver iteration counts for the convection-diffusion problem with β = 3000. Results shown are
averaged over three trials.

No. of Number of sweeps
threads 1 2 3 4 5

1 66.0 67.0 67.0 67.0 67.0
2 87.7 73.7 67.3 66.7 67.0
4 156.7 61.0 70.0 66.3 67.7
8 190.0 54.3 77.0 62.3 67.0
14 194.3 49.7 80.7 58.7 66.7
20 195.0 57.0 81.7 57.7 67.0
30 195.3 50.0 82.0 60.3 67.0
40 196.0 54.0 82.3 56.3 67.7
50 195.0 50.0 82.3 56.3 66.7
60 195.0 50.0 82.0 56.3 66.7

4.3. Results for general SPD problems. In this section, we test seven SPD
matrices from the University of Florida Sparse Matrix collection (Table 5). These are
the same seven SPD problems tested in [37] to evaluate the NVIDIA GPU implemen-
tation of level scheduled IC factorization. We used the level 0 sparsity pattern and
ran the new IC algorithm for up to three sweeps. The nonlinear residual norms and
solver iteration counts are presented in Table 6. Also presented are solver iteration
counts with the exact IC decompositions. All results were averaged over three runs,
and 240 threads were used. The results show that in all cases, the solver iteration
counts after three sweeps of the new algorithm are very nearly the same as those for
the exact IC factorization. As before, a good preconditioner was computed without
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Table 4

Nonlinear residual norms (in units of 105) for the convection-diffusion problem with β = 3000.
Results shown are averaged over three trials.

No. of Number of sweeps
threads 1 2 3 4 5

1 3.8e-16 1.8e-16 1.8e-16 1.8e-16 1.8e-16
2 0.6674 0.0613 0.0075 0.0020 0.0003
4 1.1526 0.2083 0.0470 0.0127 0.0033
8 1.3768 0.2838 0.0831 0.0264 0.0088
14 1.4594 0.3108 0.1007 0.0367 0.0115
20 1.4580 0.3191 0.1083 0.0386 0.0142
30 1.4978 0.3351 0.1137 0.0388 0.0139
40 1.4906 0.3349 0.1109 0.0392 0.0136
50 1.5014 0.3358 0.1128 0.0399 0.0138
60 1.5014 0.3382 0.1148 0.0401 0.0140

needing to fully converge the nonlinear residual.

Table 5

General SPD test matrices.

Matrix No. equations No. nonzeros
af shell3 504855 17562051
thermal2 1228045 8580313
ecology2 999999 4995991
apache2 715176 4817870
G3 circuit 1585478 7660826
offshore 259789 4242673
parabolic fem 525825 3674625

4.4. Variation of convergence with problem size. To study the convergence
of the nonlinear iterations with problem size, we use a set of 7-point finite difference
Laplacian matrices with different mesh sizes. Figure 4 plots the nonlinear residual
norms (relative to the initial norm) for 1–7 sweeps of the asynchronous fixed point
iteration with 240 threads. We observe that, anti-intuitively, convergence is better
for larger problem sizes. This is likely due to a higher fraction of unknowns being
updated simultaneously for small problems, resulting in the asynchronous method
being closer in character to a Jacobi-type fixed-point method, and thus evincing poorer
convergence behavior for small problems. For large problems, there is little variation
with problem size.

4.5. Timing comparison with level scheduled ILU. Figure 5 compares the
timings for the new ILU algorithm with those for the standard level scheduled ILU
algorithm. The test case is a 5-point finite-difference matrix on a 100 × 100 grid in
the natural ordering. The ILU(2) factorization is computed. Both algorithms assume
that the matrix is nonsymmetric. For the level scheduled ILU algorithm, the timings
do not include the time for constructing the levels.

The level scheduled ILU algorithm scales well when there are large amounts of
parallelism. This example is chosen to emphasize how well the new ILU algorithm may
perform when parallelism is limited, which is equivalent to having a very large number
of cores available on future machines. For large problems with more parallelism, the
level scheduled ILU algorithm may be faster than the new incomplete factorization
algorithm, including for large thread counts.
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Table 6

PCG iterations and nonlinear residuals for three sweeps with 240 threads of the general SPD
test matrices. Results shown are averaged over three trials.

Sweeps Nonlin. resid. PCG iter
af shell3 0 1.58+05 852.0

1 1.66+04 798.3
2 2.17+03 701.0
3 4.67+02 687.3
IC 0 685.0

thermal2 0 1.13+05 1876.0
1 2.75+04 1422.3
2 1.74+03 1314.7
3 8.03+01 1308.0
IC 0 1308.0

ecology2 0 5.55+04 2000+
1 1.55+04 1776.3
2 9.46+02 1711.0
3 5.55+01 1707.0
IC 0 1706.0

apache2 0 5.13+04 1409.0
1 3.66+04 1281.3
2 1.08+04 923.3
3 1.47+03 873.0
IC 0 869.0

G3 circuit 0 1.06+05 1048.0
1 4.39+04 981.0
2 2.17+03 869.3
3 1.43+02 871.7
IC 0 871.0

offshore 0 3.23+04 401.0
1 4.37+03 349.0
2 2.48+02 299.0
3 1.46+01 297.0
IC 0 297.0

parabolic fem 0 5.84+04 790.0
1 1.61+04 495.3
2 2.46+03 426.3
3 2.28+02 405.7
IC 0 405.0

For our example, the level scheduled algorithm is faster for small numbers of
threads, partly because the new ILU algorithm performs more work (three sweeps)
than the level scheduled algorithm. However, as the number of threads increases, the
level scheduled algorithm stops improving, while the new ILU algorithm continues to
scale. Performance is bound by the available instruction-level parallelism in the new
ILU algorithm.

5. Approximate triangular solves. This paper has focused on the parallel
computation of the incomplete factorization. For completeness, we briefly discuss the
parallel solution of sparse triangular systems, which are needed if the factorization is
used as a preconditioner. On highly parallel systems, the time for sparse triangular
solves dominates the overall solve time, including for matrix-vector multiplies and for
constructing the preconditioner. This points to the importance of further research
on parallelizing sparse triangular solves, as well as on constructing more accurate
but sparser incomplete factors (even if the factorization time must increase), thereby
reducing the number of sparse triangular solves and the cost of individual triangular
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Fig. 4. Nonlinear residual norm for three-dimensional Laplacian problems of different sizes.
Convergence is better for larger problems.
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Fig. 5. Execution time (seconds) comparison of the new ILU algorithm (three sweeps) with the
level scheduled ILU algorithm. The test case is a five-point finite difference matrix on a 100 × 100
grid, and the ILU(2) factorization is computed. Left: Timings for Intel Xeon Phi. Right: Timings
on a two-socket Intel Xeon E5-2680 v2 system (2.8 GHz) with a total of 20 cores.

solves.
A large literature already exists on parallel sparse triangular solves. Among the

many options, the most common methods are those based on level scheduling (already
mentioned above), where sets of variables are found that can be solved simultaneously.
This technique dates from at least 1989 (e.g., [3, 46, 20]), and recent research focuses
on efficient implementations (e.g., [33, 54, 36]).

Another parallel method for solving with a sparse triangular matrix R is to rep-
resent the inverse of R as the product of sparse triangular factors, called a partitioned
inverse [42, 2]. Solves with R now only involve sparse matrix-vector products with
the factors.

This method is related to a large number of other techniques based on approxi-
mating the inverse of R. An approximation is acceptable because it is used for pre-
conditioning, which is already approximate. Sparse approximate inverse techniques
have been applied to ILU factors [51], and other approximate techniques have also
been applied for inverting ILU factors; see, e.g., [7]. Also, the inverse ILU factors may
be approximated via a truncated Neumann series [49, 7].

The idea of using iterative approximate solves, which we applied to computing the
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ILU factorization, can be extended to solving sparse triangular systems for precondi-
tioning. Here, we briefly illustrate solving a triangular system Rx = b approximately
by a fixed small number of steps of the Jacobi iteration (related to using a truncated
Neumann series; other polynomial approximations to the inverse of R may also be
used).

xk+1 = (I −D−1R)xk +D−1b,

where D is the matrix consisting of the diagonal of R. Thus the iteration matrix
G = I − D−1R is strictly triangular (the diagonal is all zeros) and has spectral
radius 0, providing trivial asymptotic convergence, just like in the new parallel ILU
algorithm. Convergence within a small number of iterations is desired, however, and
this depends on the norm or nonnormality of G and its pseudospectra [47]. Clearly,
the nonnormality of G may be arbitrarily bad, but for triangular matrices R arising
from stable incomplete factorizations of physically based problems, R is often close to
being diagonally dominant, making the norm of G small.

Table 7

Solver iteration counts and timings; comparison of level scheduled triangular solves and iterative
triangular solves. The last column shows the number of Jacobi steps used to approximately solve
with the triangular factors in the iterative triangular solves.

IC PCG iterations Timing (seconds) Num.
level LevSch Iterative LevSch Iterative steps

af shell3 1 375 592 79.59 23.05 6
thermal2 0 1860 2540 120.06 48.13 1
ecology2 1 1042 1395 114.58 34.20 4
apache2 0 653 742 24.68 12.98 3
G3 circuit 1 329 627 52.30 32.98 5
offshore 0 341 401 42.70 9.62 5
parabolic fem 0 984 1201 15.74 16.46 1

Table 7 shows results from this approach for the seven SPD problems used ear-
lier. PCG iteration counts and solver iteration time are reported for parallel triangular
solves using level scheduling (denoted “LevSch”) and for iterative triangular solves
(denoted “Iterative”). Either a level 0 or a level 1 IC factorization was used, de-
pending on which gave better performance, and 60 threads were used. We observe
that although the number of solver iterations is higher for the iterative approach, the
time can be significantly lower. The advantage of using iterative triangular solves is
greater when more threads are used. In these results, a fixed number of synchronous
Jacobi iterations were used, from 1 to 6. Since a fixed number is used, the precon-
ditioning operation is a fixed linear operator, and solvers that can accommodate a
changing preconditioner are not required. A flexible solver is required if asynchronous
triangular solves are used; see, e.g., [44].

Our examples in this section have all been SPD. We point out that diagonally
scaled PCG can converge after a very large number of iterations, and this is because
an approximate solution must eventually be found in the space searched by the PCG
method. Depending on the number of iterations, diagonally scaled PCG may be
faster than IC preconditioning in highly parallel environments. For nonsymmetric
problems, however, short-recurrence iterative methods do not exist, meaning that all
methods must either store a vector for every iteration and then restart when storage
is exhausted (e.g., restarted GMRES) or be nonoptimal (e.g., BiCGStab). Thus
diagonally scaled restarted GMRES or BiCGStab may never converge. In this case,
a better preconditioner such as ILU is absolutely necessary for convergence.
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6. Conclusions and future work. This paper presented a new parallel algo-
rithm for computing an incomplete factorization. Individual matrix entries in the
factorization can be computed in parallel. The algorithm is based on a reformula-
tion of ILU as the solution of a set of bilinear equations which can be solved using
fine-grained asynchronous parallelism. The nonlinear equations are solved using fixed-
point iteration sweeps that are performed in parallel. Very few sweeps are needed to
construct an incomplete factorization that is an effective preconditioner. The new
parallel ILU algorithm is very different from existing approaches for parallelizing an
ILU factorization. Many existing approaches require reordering the matrix to enhance
the available parallelism. In the new approach, the amount of parallelism is large for
any ordering of the matrix, including for orderings that enhance convergence of the
solver.

Future work includes (1) developing variants that dynamically update the sparsity
pattern during the nonlinear iterations, to obtain a method akin to threshold-based
ILU, (2) applying the new algorithm to time-dependent and other problems involving
a sequence of linear systems, where the ILU factorization from a previous time step
is a natural initial guess for the factorization at the current time step, (3) examining
the effect on convergence of how variables and equations are assigned to threads, and
(4) extending the approach presented here to other sparse approximate factorizations,
such as factorized sparse approximate inverses.

Appendix A. Proof of Theorem 3.8. Each column of the Jacobian is as-
sociated with a nonzero (k, l) ∈ S. Let skl denote the absolute sum of the column
associated with nonzero (k, l). The values of the variables at which the Jacobian is
evaluated are denoted by subscripted l and u.

A column with k > l contains elements corresponding to partial derivatives with
respect to lkl:

(A.1)

∂Gg(i,j)

∂lkl
= − ulj

ujj
if k = i, l < j, j < i, (i, j) ∈ S, (l, j) ∈ S,

∂Gg(i,j)

∂lkl
= −ulj if k = i, l < i, i ≤ j, (i, j) ∈ S, (l, j) ∈ S.

A column with k < l contains elements corresponding to partial derivatives with
respect to ukl:

(A.2)

∂Gg(i,j)

∂ukl
= − lik

ujj
if l = j, k < j, j < i, (i, j) ∈ S, (i, k) ∈ S,

∂Gg(i,j)

∂ukl
= −lik if l = j, k < i, i ≤ j, (i, j) ∈ S, (i, k) ∈ S.

A column with k = l contains elements corresponding to partial derivatives with
respect to ukk:

(A.3)
∂Gg(i,j)

∂ukk
= − 1

u2
kk

(
aij −

j−1∑
p=1

lipupj

)
if k = j, j < i.

We now state and prove three lemmas, one for each of the above three cases,
k > l, k < l, and k = l. Below we assume that ujj = 1 ∀1 ≤ j ≤ n.

Lemma A.1. If k > l, then skl =
∑n

j=l+1
(k,j)∈S

|ulj |.
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Proof. Let skl =
∑n

j=1

∑n
i=1 cijkl, where

cijkl =

⎧⎪⎨
⎪⎩
|ulj| for k = i, l < j, j < i, (i, j) ∈ S,

|ulj| for k = i, l < i, i ≤ j, (i, j) ∈ S,

0 otherwise.

These expressions are from (A.1). Using indicator functions, we can express cijkl as

cijkl = I[k = i] I[l < j] I[j < i] I[(i, j) ∈ S] |ulj |
+ I[k = i] I[l < i] I[i ≤ j] I[(i, j) ∈ S] |ulj |.

Define

s1kl =

n∑
j=1

n∑
i=1

I[k = i] I[l < j] I[j < i]I[(i, j) ∈ S] |ulj |

=

n∑
j=1

I[l < j] I[j < k] I[(k, j) ∈ S] |ulj |

=

k−1∑
j=l+1
(k,j)∈S

|ulj |,(A.4)

s2kl =

n∑
j=1

n∑
i=1

I[k = i] I[l < i] I[i ≤ j] I[(i, j) ∈ S] |ulj |

=

n∑
j=1

I[l < k] I[k ≤ j] I[(k, j) ∈ S] |ulj |

=

n∑
j=k

(k,j)∈S

|ulj |.(A.5)

From (A.4) and (A.5) we have

skl = s1kl + s2kl =

k−1∑
j=l+1
(k,j)∈S

|ulj |+
n∑

j=k
(k,j)∈S

|ulj | =
n∑

j=l+1
(k,j)∈S

|ulj |.

Lemma A.2. If k < l, then skl =
∑n

i=k+1
(i,l)∈S

|lik|.
The proof of this lemma is analogous to that of Lemma A.1.

Lemma A.3. If k = l, then skk =
∑n

i=k+1 |aik − tik|, where tik =
∑k−1

p=1 lipupk.

Proof. Let skk =
∑n

j=1

∑n
i=1 cijk, where

cijk =

{
|aij − tij | for k = j, j < i, (i, j) ∈ S,

0 otherwise,
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which is from (A.3). Now, using indicator functions,

skk =

n∑
i=1

n∑
j=1

I[k = j] I[j < i] I[(i, j) ∈ S] |aij − tij |

=

n∑
i=1

I[k < i] I[(i, k) ∈ S] |aik − tik|

=

n∑
i=k+1

|aik − tik|.

Proof of Theorem 3.8.

‖G′(L̃, Ũ)‖1 = max
(k,l)∈S

(skl)

= max

(
max
k>l

(skl), max
k<l

(skl), max
k

(skk)

)
.

For k > l, applying Lemma A.1,

skl =

n∑
j=l+1
(k,j)∈S

|ulj | ≤
n∑

j=l+1

|ulj |,

max
k>l

(skl) ≤ ‖Ũ‖∞.

For k < l, applying Lemma A.2,

skl =

n∑
i=k+1
(i,l)∈S

|lik| ≤
n∑

j=k+1

|lik|,

max
k<l

(skl) ≤ ‖L̃‖1.

For k = l, applying Lemma A.3,

skk =

n∑
i=k+1

|aik − tik|,

max
k

(skk) = ‖R̃L∗‖1,

where R̃L∗ is the strictly lower triangular part of A− T̃ . Combining the above,

‖G′(L̃, Ũ)‖1 = max
(k,l)∈S

(skl) ≤ max(‖Ũ‖∞, ‖L̃‖1, ‖R̃L∗‖1).

Appendix B. Proof of Theorem 3.9.
Proof. We will first show that for the 5-point matrix on a 2D grid, the expression

for skl is very simple:

skl =

⎧⎪⎨
⎪⎩
|ulk| for k > l,

|llk| for k < l,∑n
i=k+1 |aik| for k = l.
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Consider the first case, k > l, and Lemma A.1,

skl =

n∑
j=l+1
(k,j)∈S

|ulj |.

The terms in the sum are in row l of Ũ . The terms in the sum that survive the
condition (k, j) ∈ S correspond to nonzeros in column k of Ũ . In the directed graph
of Ũ , vertex l and vertex k share an edge because (k, l) ∈ S. (This graph is the
obvious subgraph of the 2D grid.) The 5-point stencils at vertex k and vertex l do
not intersect, except for the edge (k, l). Therefore, the only term in the sum is |ulk|,
as promised. Similarly, using Lemma A.2, skl = |llk| for k < l.

To prove the case k = l, consider Lemma A.3,

skk =

n∑
i=k+1

|aik − tik|, where tik =

k−1∑
p=1

lipupk,

particularly the summation for tik. The sparsity patterns of row i of L̃ and column k
of Ũ do not intersect except for edge (i, k) when vertex i is a neighbor of vertex k in the
graph of the matrix A. Ignoring the limits of the summation, the only nonzero term
in the sum is likukk. However, this term is outside the upper limit of the summation.
Therefore, tik = 0, and the case k = l is proven.

The above results obviously also hold true for the 7-point stencil on a three-
dimensional grid.

The 1-norm of the Jacobian is the maximum among

max
k>l

(skl) = max
k>l

(|ulk|),
max
k<l

(skl) = max
k<l

(|llk|),

max
k

(skk) = max
k

n∑
i=k+1

|aik| = ‖AL∗‖1,

where AL∗ denotes the strictly lower triangular part of A. Therefore,

‖G′(L̃, Ũ)‖1 = max(‖L̃‖max, ‖Ũ‖max, ‖AL∗‖1).
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