CS 598: Communication Cost Analysis of Algorithms
Lecture 21: Approximate low-rank dense matrix and tensor factorizations

Edgar Solomonik

University of lllinois at Urbana-Champaign

November 2, 2016

Rank-revealing matrix factorizations Motivation

Low rank factorizations

In the next lectures, we will explore ways to express data and operators in
a reduced form

@ a basic application is image/video compression

o data is a dense matrix/tensor
@ an advanced application is recommender systems

e given a sparse subset of a matrix/tensor, predict unseen data
@ a suitable low rank factorization can identify desired features

o for matrices, especially sparse ones, a low rank representation can be
hard to compute, but is efficient to apply

o for tensors, we will often aim to find a reduced-order representation,
e.g. by writing a 3rd order tensor as a product of matrices

Rank-k Singular Value Decomposition (SVD)

For any matrix A € R™*" of rank k there exists a factorization

A= UDVT

N

U € R™*k is a matrix of orthonormal left singular vectors

D € R¥*k is a nonnegative diagonal matrix of singular values in
decreasing order

V € R"k is a matrix of orthonormal right singular vectors

if Ais symmetric U =V and D are the eigenvalues

Rank-revealing matrix factorizations Truncated SVD

Low rank matrix approximation

Given A € R™*" of rank at least k what is its best rank k approximation?

B = argmin(||A — Bl|F)
BeRmxn

e Frobenius norm reminder: || X||2 = > X(i,j)?
o Eckart-Young theorem: let A= UDV'T then
B=U(,1:k)D(1:k,1:k)V(1:k,:)

this is the truncated SVD of A

Computing the SVD

We briefly discussed eigenvalues computation for symmetric matrices in a
previous lecture

o reduce matrix to tridiagonal form then use MRRR or similar algorithm
@ use QR for elimination, perform two-sided updates

@ updates affect each-other, so parallelization more complex than QR

o

achieving good cache complexity and synchronization cost requires
reducing to a banded matrix

@ band-to-band reduction done again by elimination via QR
factorization, however, updates create fill, which must be chased
down the band

@ computing k singular vectors can be done by reordering accordingly
and reapplying all orthogonal transformations to identity matrix

Cost of computing the SVD

A recent algorithm for tridiagonalization of a square matrix obtains cost

n? log(P)
O<TMM(n,P) Ve v+ VcPlog?(P) -)

where Tym(n, P) is the cost of multiplying n x n matrices

e as before M = O(cn/P) for c € [1, P1/3]

@ logarithmic factors of overhead with respect to LU and QR
e requires O(log(P)) band-to-band reductions
°

each reduction requires O(n’k) computation for computing k singular
vectors, since fill structure isn't preserved in back-transformations

@ algorithm is then work and interprocessor communication-efficient for
computing up to n/ log(P) singular vectors

Rank-revealing QR

If Ais of rank k and its first k columns are linearly independent

Rii Ri2
A=Q | 0 0
0 0

where Ry1 is k x k and Q = YTY T with n x k matrix Y

@ to obtain this factorization for arbitrary A we need column ordering I
A= QRN

@ column pivoting (proposed by Golub) is an effective method for this
e pivot so that the leading column has largest 2-norm
o method can break in the presence of roundoff error (see Kahan matrix),
but is very robust in practice

Rank-revealing matrix factorizations QR with column pivoting

Low rank factorization with pivoted QR

QR with column pivoting can be used to either

determine the (numerical) rank of A

compute a low-rank approximation with a bounded error

Q: how many operations are executed if we stop at column k?
A: the amount of computation is O(mnk)

compare to O(mn?) for a full QR or SVD

Cache-efficient pivoted QR

Lets consider the memory-bandwidth cost of QR with column pivoting
@ a challenge arises in the need for computing column norms

@ updating the trailing matrix for every column would require
o(n*-v)

memory-cache traffic assuming H < n?

@ however, we can circumvent computing the full update, by exploiting
its orthogonality

e Q: if Q is orthogonal, what do we know about ||w||2 = ||Qv||2?
@ A: ||w||2 = ||v||2, the update does not change the norm of the column

@ since the next trailing matrix excludes the top row, it each column
norm can be updated with O(1) operations

@ this property permits an efficient “BLAS-3" implementation

Rank-revealing matrix factorizations QR with column pivoting

Communication cost of pivoted QR

In distributed-memory, column pivoting poses further challenges

@ need at least one message to retrieve each column, which leads to
Q(k) synchronizations

@ to find a solution, we can take motivation from tournament pivoting

o selects a set of rows at a time for LU factorization

@ Q: would selecting a set of columns with high norm be a good
heuristic?

@ A: no, they may be linearly dependent and annihilated by the same
orthogonal transformation

@ what we need is a set of columns that are linearly independent

Rank-revealing matrix factorizations QR with column pivoting

Communication-avoiding rank-revealing QR

[Demmel, Grigori, Gu, Xiang 2015] propose
e tournament of RRQR (rank-revealing QR) factorizations

e For A€ R™*® with m > b can compute A = QRI1, by first computing
A= @Q1Ry, then Ry = QRN and Q@ = Q1 Q>

@ consider m X n matrix on a p, X pc processor grid

@ recursively find b linearly independent columns from first n/2 and last
n/2 columns of the matrix, X and Y in parallel, then compute

Z=[X Y|n"=QR

and pick b columns Z[:,1 : b]

@ base case (n = b, pc = 1) return columns (slight modification of
above reference)

Cost analysis of CARRQR

Lets analyze the cost of this algorithm in BSP, for each of k/b steps
o focus on the RRQR tournament, the rest is the same as 2D QR
@ tournament tree is of height O(log(n/b))
@ so long as b < n/pc, each step is dominated by m x b QR

@ done by processor column of height p, with row recursion

Trsqr(m, b, p;) = O((mb?/ p,+b*log(p;))-7+b* log(p)-B-+log(pr))

therefore, the total additional cost is logy,(n/b) Ttsqr(n, b, pr)

Q: assume m = n = k and p, = p. = /p, what b do we need so as
to have bandwidth cost O(n?/+/P - 3)?

o A: we need b= O(n/(v/Plog?(P)))

NS
Short pause

Low-order tensor factorizations ~ Tensor basics

Tensors

A tensor is a multidimensional matrix T, with elements T (i, /, k, ...)
o the order of the tensor is the number of modes (indices i/, J, k, ...)

o the dimensions are the ranges of the modes
o Kolda and Bader 2009 provide a good review of tensor factorizations

o we will be using somewhat different notation
e they denote tensors 7, matrices and vectors as M, v

@ it is common to fold tensors into higher order tensors and unfold into
lower order

e we will denote folding via, e.g. T(iok,j, 1) = W(i,j, k,I), where if
the range of i is n

T(i + kn7j7 l) = W(i7.j7 k7 /)

o we will also omit often quantifiers V and write >, > as >,

Low-order tensor factorizations ~ Tensor basics

Tensor contractions

A tensor contraction is a generalization of matrix and vector products, e.g.

W(i,j, k ZT g m)-V(m, k1)

its often convenient to express contractions and factorizations by diagrams
I |

j i
Any tensor contraction can be reduced to matrix multiplication C = AB,
for instance for the contraction above,

Alioj,lom)=T(i,l,jm), B(lomk)=V(m,kI)
and C(ioj, k)= W(i,j, k)

Low-order tensor factorizations ~ Tensor factorizations

Tensor train

A low-order tensor factorization expresses a tensor as contractions of
smaller order ones

an easy to compute and practical factorization is the tensor train

given order d + 2 tensor T, factorize into d tensors

- T

Q: what order is each factor W;?

A: 3

other variants of the factorization for an order d tensor define W4 and
W, to be order 2, but the intermediate nodes need to be at least

order 3

the quality of the factorization depends on the dimension of the
internal (contracted/auxiliary) modes

Low-order tensor factorizations ~ Tensor factorizations

Computing a tensor train factorization

The tensor train decomposition can be computed using low-rank matrix
factorizations

@ consider low rank matrix factorization A = UV where A € R™*" and
UeR™k VeRF"and k<n<m

@ we can compute A = UV via SVD or QR with column pivoting or
some other method

@ a tensor train factorization of T can be computed via matrix
factorization of T(i1,ip0i30---0iy) = UV followed by a tensor train
factorization of (the refolded) V

@ other orderings to break apart the indices are also possible

o for a given accuracy, the resulting internal modes will have different
rank depending on the ordering

Low-order tensor factorizations ~ Tensor factorizations

CP decomposition

The most natural generalization of the matrix SVD is the CP
decomposition

@ decompose a tensor T of any order d into matrices

T(i1,. .. iq Z)\ Us(ig, k) - ... Ug(ig, k)

@ R is referred to as the tensor rank

@ the problem of computing the rank is NP hard and the approximation
problem is ill-posed

Low-order tensor factorizations ~ Tensor factorizations

Matrix multiplication algorithms via CP decomposition

A very important application of the CP decomposition is the search for
Strassen-like matrix multiplication algorithms
@ in Strassen's algorithm and other fast matrix multiplication
algorithms, we compute R linear combinations of elements of A,
which can be defined by U

vk e[1,R] Ak ZU ij, K)A(,J)

@ and R linear combinations of elements of B, defined by V

Vk e [1,R] B(k)=>_ V(i.j,k)B(i.j)
o finally these combinations are accumulated into C, as defined by W

Z W(i,j, k)A(k) - B(k)

Low-order tensor factorizations ~ Tensor factorizations

Matrix multiplication algorithms via CP decomposition
Overall the matrix multiplication problem can be defined as
Clij1) = Y T(ivsjvs i o, is, j3) Al j2) B(is, J3)
ij213)3

o where T (i1, /1,2, j2,13,/3) =1 when iy =i, p = jz and o = i3
@ we compute matrix multiplication via the linear combinations defined
by U, V, and W

’la.ll Z W ’1aJ1a Z (U(i27./.2’ k)A(I2aJ2))(V(I37./3a k)B(I3aJ3))
ij2i3f3
@ rearranging this we obtain

Clina)= > [Z W (ir, j1, k Iz,jz,k)V(/avja,k)]A(/zajz)B(lé,ja)

i2j213j3 =

@ so W(ip oj1,k), U(ir 02, k), V(i3 0 j3,k) are CP factors of
T(I]_ 0 J1,1/20 jo, I3 O_j3) with rank R

Low-order tensor factorizations ~ Tensor factorizations

Matrix multiplication algorithms via CP decomposition

The rank of the CP decomposition of the 3rd order unfolding of T gives
the number of multiplications that need to be done
@ when all dimensions of T are 2, i.e. it represents multiplication of
matrices with dimension 2 x 2, the rank of T is 7 (Strassen’s
algorithm)
@ let the CP decomposition of T with dimensions
mx nx mXx k x k x nhave rank R
@ we can construct a matrix multiplication algorithm with R recursive
calls that reduces the problem by a factor of mnk
@ for multiplications of matrices N x N we would have complexity
O(N¥) where w = 3log .k (R)

Low-order tensor factorizations ~ Tensor factorizations

Tucker decomposition

The Tucker decomposition provides a more general decomposition for an

order d tensor T
L
T =
[s |

unlike the CP decomposition, we have a core tensor S of order d

T(iv,..yig) =Y Sk, ka) Wa(ir, ki) - ... Wa(ia, ka)
ki--kq

we achieve an improvement if the dimensions of S are less than T
the CP decomposition can be seen as having a ‘diagonal’ tensor S

Q: is Tucker a low-order factorization?

A: no, the order of S is the same as T, it should be interpreted as a
low-rank decomposition

Alternating least squares (ALS)

ALS is the standard procedure for computing CP and Tucker
decompositions

@ assumes there is a given rank R

@ contract together all components except one into V/, yielding
T=U- -V

@ optimize U;, for instance solve for U; in T = U;V under constraint
that columns of U; are orthogonal

e alternate components (optimize U;)

@ Tucker permits more general optimization, since we can modify S

@ ALS gives no general convergence guarantees

	Rank-revealing matrix factorizations
	Motivation
	Truncated SVD
	QR with column pivoting

	Low-order tensor factorizations
	Tensor basics
	Tensor factorizations

