
CS 598: Communication Cost Analysis of Algorithms
Lecture 21: Approximate low-rank dense matrix and tensor factorizations

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 2, 2016

Rank-revealing matrix factorizations Motivation

Low rank factorizations

In the next lectures, we will explore ways to express data and operators in
a reduced form

a basic application is image/video compression

data is a dense matrix/tensor

an advanced application is recommender systems

given a sparse subset of a matrix/tensor, predict unseen data

a suitable low rank factorization can identify desired features

for matrices, especially sparse ones, a low rank representation can be
hard to compute, but is efficient to apply

for tensors, we will often aim to find a reduced-order representation,
e.g. by writing a 3rd order tensor as a product of matrices

Rank-revealing matrix factorizations Truncated SVD

Rank-k Singular Value Decomposition (SVD)

For any matrix A ∈ Rm×n of rank k there exists a factorization

A = UDV T

U ∈ Rm×k is a matrix of orthonormal left singular vectors

D ∈ Rk×k is a nonnegative diagonal matrix of singular values in
decreasing order

V ∈ Rn×k is a matrix of orthonormal right singular vectors

if A is symmetric U = V and D are the eigenvalues

Rank-revealing matrix factorizations Truncated SVD

Low rank matrix approximation

Given A ∈ Rm×n of rank at least k what is its best rank k approximation?

B = argmin
B∈Rm×n

(||A− B||F)

Frobenius norm reminder: ||X ||2F =
∑

ij X (i , j)2

Eckart-Young theorem: let A = UDV T then

B = U(:, 1 : k)D(1 : k, 1 : k)V (1 : k, :)

this is the truncated SVD of A

Rank-revealing matrix factorizations Truncated SVD

Computing the SVD

We briefly discussed eigenvalues computation for symmetric matrices in a
previous lecture

reduce matrix to tridiagonal form then use MRRR or similar algorithm

use QR for elimination, perform two-sided updates

updates affect each-other, so parallelization more complex than QR

achieving good cache complexity and synchronization cost requires
reducing to a banded matrix

band-to-band reduction done again by elimination via QR
factorization, however, updates create fill, which must be chased
down the band

computing k singular vectors can be done by reordering accordingly
and reapplying all orthogonal transformations to identity matrix

Rank-revealing matrix factorizations Truncated SVD

Cost of computing the SVD

A recent algorithm for tridiagonalization of a square matrix obtains cost

O

(
TMM(n,P) +

n2 log(P)√
cP

· ν +
√
cP log2(P) · α

)
where TMM(n,P) is the cost of multiplying n × n matrices

as before M = O(cn/P) for c ∈ [1,P1/3]

logarithmic factors of overhead with respect to LU and QR

requires Θ(log(P)) band-to-band reductions

each reduction requires O(n2k) computation for computing k singular
vectors, since fill structure isn’t preserved in back-transformations

algorithm is then work and interprocessor communication-efficient for
computing up to n/ log(P) singular vectors

Rank-revealing matrix factorizations QR with column pivoting

Rank-revealing QR

If A is of rank k and its first k columns are linearly independent

A = Q

R11 R12

0 0
0 0

where R11 is k × k and Q = YTY T with n × k matrix Y

to obtain this factorization for arbitrary A we need column ordering Π

A = QRΠ

column pivoting (proposed by Golub) is an effective method for this

pivot so that the leading column has largest 2-norm
method can break in the presence of roundoff error (see Kahan matrix),
but is very robust in practice

Rank-revealing matrix factorizations QR with column pivoting

Low rank factorization with pivoted QR

QR with column pivoting can be used to either

determine the (numerical) rank of A

compute a low-rank approximation with a bounded error

Q: how many operations are executed if we stop at column k?

A: the amount of computation is O(mnk)

compare to O(mn2) for a full QR or SVD

Rank-revealing matrix factorizations QR with column pivoting

Cache-efficient pivoted QR

Lets consider the memory-bandwidth cost of QR with column pivoting

a challenge arises in the need for computing column norms

updating the trailing matrix for every column would require

O(n3 · ν)

memory-cache traffic assuming H < n2

however, we can circumvent computing the full update, by exploiting
its orthogonality

Q: if Q is orthogonal, what do we know about ||w ||2 = ||Qv ||2?

A: ||w ||2 = ||v ||2, the update does not change the norm of the column

since the next trailing matrix excludes the top row, it each column
norm can be updated with O(1) operations

this property permits an efficient “BLAS-3” implementation

Rank-revealing matrix factorizations QR with column pivoting

Communication cost of pivoted QR

In distributed-memory, column pivoting poses further challenges

need at least one message to retrieve each column, which leads to
Ω(k) synchronizations

to find a solution, we can take motivation from tournament pivoting

selects a set of rows at a time for LU factorization

Q: would selecting a set of columns with high norm be a good
heuristic?

A: no, they may be linearly dependent and annihilated by the same
orthogonal transformation

what we need is a set of columns that are linearly independent

Rank-revealing matrix factorizations QR with column pivoting

Communication-avoiding rank-revealing QR

[Demmel, Grigori, Gu, Xiang 2015] propose

tournament of RRQR (rank-revealing QR) factorizations

For A ∈ Rm×b with m� b can compute A = QRΠ, by first computing
A = Q1R1, then R1 = Q2RΠ and Q = Q1Q2

consider m × n matrix on a pr × pc processor grid

recursively find b linearly independent columns from first n/2 and last
n/2 columns of the matrix, X and Y in parallel, then compute

Z =
[
X Y

]
ΠT = QR

and pick b columns Z [:, 1 : b]

base case (n = b, pc = 1) return columns (slight modification of
above reference)

Rank-revealing matrix factorizations QR with column pivoting

Cost analysis of CARRQR

Lets analyze the cost of this algorithm in BSP, for each of k/b steps

focus on the RRQR tournament, the rest is the same as 2D QR

tournament tree is of height O(log(n/b))

so long as b < n/pc , each step is dominated by m × b QR

done by processor column of height pr with row recursion

TTSQR(m, b, pr) = O((mb2/pr+b3 log(pr))·γ+b2 log(pr)·β+log(pr)·α)

therefore, the total additional cost is log2(n/b)TTSQR(n, b, pr)

Q: assume m = n = k and pr = pc =
√
p, what b do we need so as

to have bandwidth cost O(n2/
√
P · β)?

A: we need b = O(n/(
√
P log2(P)))

Short pause

Low-order tensor factorizations Tensor basics

Tensors

A tensor is a multidimensional matrix T , with elements T (i , j , k , ...)

the order of the tensor is the number of modes (indices i , j , k , ...)

the dimensions are the ranges of the modes

Kolda and Bader 2009 provide a good review of tensor factorizations

we will be using somewhat different notation
they denote tensors T , matrices and vectors as M, v

it is common to fold tensors into higher order tensors and unfold into
lower order

we will denote folding via, e.g. T (i ◦ k, j , l) = W (i , j , k , l), where if
the range of i is n

T (i + kn, j , l) = W (i , j , k , l)

we will also omit often quantifiers ∀ and write
∑

i

∑
j as

∑
ij

Low-order tensor factorizations Tensor basics

Tensor contractions

A tensor contraction is a generalization of matrix and vector products, e.g.

W (i , j , k) =
∑
lm

T (i , l , j ,m) · V (m, k , l)

its often convenient to express contractions and factorizations by diagrams

Any tensor contraction can be reduced to matrix multiplication C = AB,
for instance for the contraction above,

A(i ◦ j , l ◦m) = T (i , l , j ,m), B(l ◦m, k) = V (m, k , l)

and C (i ◦ j , k) = W (i , j , k)

Low-order tensor factorizations Tensor factorizations

Tensor train

A low-order tensor factorization expresses a tensor as contractions of
smaller order ones

an easy to compute and practical factorization is the tensor train

given order d + 2 tensor T , factorize into d tensors

Q: what order is each factor Wi?

A: 3

other variants of the factorization for an order d tensor define W1 and
Wd to be order 2, but the intermediate nodes need to be at least
order 3

the quality of the factorization depends on the dimension of the
internal (contracted/auxiliary) modes

Low-order tensor factorizations Tensor factorizations

Computing a tensor train factorization

The tensor train decomposition can be computed using low-rank matrix
factorizations

consider low rank matrix factorization A = UV where A ∈ Rm×n and
U ∈ Rm×k , V ∈ Rk×n and k ≤ n ≤ m

we can compute A = UV via SVD or QR with column pivoting or
some other method

a tensor train factorization of T can be computed via matrix
factorization of T (i1, i2 ◦ i3 ◦ · · · ◦ id) = UV followed by a tensor train
factorization of (the refolded) V

other orderings to break apart the indices are also possible

for a given accuracy, the resulting internal modes will have different
rank depending on the ordering

Low-order tensor factorizations Tensor factorizations

CP decomposition

The most natural generalization of the matrix SVD is the CP
decomposition

decompose a tensor T of any order d into matrices

T (i1, . . . , id) =
R∑

k=1

λ(k) · U1(i1, k) · . . .Ud(id , k)

R is referred to as the tensor rank

the problem of computing the rank is NP hard and the approximation
problem is ill-posed

Low-order tensor factorizations Tensor factorizations

Matrix multiplication algorithms via CP decomposition

A very important application of the CP decomposition is the search for
Strassen-like matrix multiplication algorithms

in Strassen’s algorithm and other fast matrix multiplication
algorithms, we compute R linear combinations of elements of A,
which can be defined by U

∀k ∈ [1,R] Ā(k) =
∑
ij

U(i , j , k)A(i , j)

and R linear combinations of elements of B, defined by V

∀k ∈ [1,R] B̄(k) =
∑
ij

V (i , j , k)B(i , j)

finally these combinations are accumulated into C , as defined by W

C (i , j) =
R∑

k=1

W (i , j , k)Ā(k) · B̄(k)

Low-order tensor factorizations Tensor factorizations

Matrix multiplication algorithms via CP decomposition
Overall the matrix multiplication problem can be defined as

C (i1, j1) =
∑
i2j2i3j3

T (i1, j1, i2, j2, i3, j3)A(i2, j2)B(i3, j3)

where T (i1, j1, i2, j2, i3, j3) = 1 when i1 = i2, j2 = j3 and j2 = i3
we compute matrix multiplication via the linear combinations defined
by U, V , and W

C (i1, j1) =
R∑

k=1

W (i1, j1, k)
∑
i2j2i3j3

(U(i2, j2, k)A(i2, j2))(V (i3, j3, k)B(i3, j3))

rearranging this we obtain

C (i1, j1) =
∑
i2j2i3j3

[R∑
k=1

W (i1, j1, k)U(i2, j2, k)V (i3, j3, k)
]
A(i2, j2)B(i3, j3)

so W (i1 ◦ j1, k), U(i2 ◦ j2, k), V (i3 ◦ j3, k) are CP factors of
T (i1 ◦ j1, i2 ◦ j2, i3 ◦ j3) with rank R

Low-order tensor factorizations Tensor factorizations

Matrix multiplication algorithms via CP decomposition

The rank of the CP decomposition of the 3rd order unfolding of T gives
the number of multiplications that need to be done

when all dimensions of T are 2, i.e. it represents multiplication of
matrices with dimension 2× 2, the rank of T is 7 (Strassen’s
algorithm)

let the CP decomposition of T with dimensions
m × n ×m × k × k × n have rank R

we can construct a matrix multiplication algorithm with R recursive
calls that reduces the problem by a factor of mnk

for multiplications of matrices N × N we would have complexity
O(Nω) where ω = 3 logmnk(R)

Low-order tensor factorizations Tensor factorizations

Tucker decomposition

The Tucker decomposition provides a more general decomposition for an
order d tensor T

unlike the CP decomposition, we have a core tensor S of order d

T (i1, . . . , id) =
∑
k1···kd

S(k1, . . . , kd) ·W1(i1, k1) · . . .Wd(id , kd)

we achieve an improvement if the dimensions of S are less than T

the CP decomposition can be seen as having a ‘diagonal’ tensor S

Q: is Tucker a low-order factorization?

A: no, the order of S is the same as T , it should be interpreted as a
low-rank decomposition

Low-order tensor factorizations Tensor factorizations

Alternating least squares (ALS)

ALS is the standard procedure for computing CP and Tucker
decompositions

assumes there is a given rank R

contract together all components except one into V , yielding
T = Ui · V
optimize Ui , for instance solve for Ui in T = UiV under constraint
that columns of Ui are orthogonal

alternate components (optimize Uj)

Tucker permits more general optimization, since we can modify S

ALS gives no general convergence guarantees

	Rank-revealing matrix factorizations
	Motivation
	Truncated SVD
	QR with column pivoting

	Low-order tensor factorizations
	Tensor basics
	Tensor factorizations

