
CS 598: Communication Cost Analysis of Algorithms
Lecture 25: Fast integral equation methods, hierarchically structured matrices

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 16, 2016

Fast solvers given uniform density Molecular dynamics review

Distance-limited interactions

Last lecture covered methods for direct particle interactions

pairwise interactions among N particles with cut-off radius rc

uniform distribution in N1/3 × N1/3 × N1/3 domain

best algorithm attained communication cost

O

(
rc
(N
P

)2/3
+ r

3/2
c

√
N/P

)
the first term is rc times the boundary of a box assigned to a
processor and is dominant when rc is small

when rc is big, a good approach would be to let each processor
compute interactions between a unique pair of two boxes

the total number of pairwise interactions is Θ(Nr3c), and given K
particles there are O(K 2) interactions to perform, so the two boxes
would need to be of size Θ(

√
Nr3c /P)

Fast solvers given uniform density 3D Poisson solvers

Smooth Particle Mesh Ewald (SPME) method

Solve for long range interactions on a m ×m ×m charge grid

assume to be periodicity, which is reasonable for large systems
Ewald summation is used to split the total potential energy

E =
1

2

∑
c∈Z3

N∑
i=1

N∑
j=1

qiqj
|x(i)− x(j) + cN1/3|

into two parts (the form here is slightly simplified)
the first part is a dampened direct summation

Edir =
1

2

∑
c∈Z3

N∑
i=1

N∑
j=1

qiqjerfc(β|x(i)− x(j) + cN1/3|)
|x(i)− x(j) + cN1/3|

the function erfc(y) is the probability a uniform random variable with
mean 0 and variance 1/2 falls outside of the range [−y , y], so pairs
with sufficiently large x(i)− x(j) or in distant cells can be ignored
the second part is a convolution over the charge grid in all cells except
c = (0, 0, 0) contracted based on β

Fast solvers given uniform density 3D Poisson solvers

SPME computational structure

The forces on particles in SPME are obtained by equations that are
derivatives of the energy with respect to position

the computation of the reciprocal part is fairly simple
B-splines interpolate charge from nearby region of particles with cost

O(m3/P · γ + (N/P)2/3 · β + α)

Q: the convolution on the m ×m ×m charge grid is solved via 3D
FFT, with what cost?
A: when P ≤ m5/2

O(m3 log(m)/P · γ + m3/P · β + α)

integrating potential from grid to compute forces on particles has cost

O(m3/P · γ + m2/P2/3 · β + α)

SPME performs very well when the charge density is uniform and
periodic conditions are reasonable, it is also straight-forward to adjust
it to handle bonded interactions

Fast solvers given uniform density 3D Poisson solvers

Solving 3D Poisson via multigrid

We can achieve an overall computation cost of O(N/P) for MD, when
m3 ≈ N by using multigrid

grid construction and charge interpolation is different but possible
multigrid V-cycle with grid mi ×mi ×mi has the following costs

O(1) smoothing iterations per level have cost

O(m3
i /P · γ + m2

i /P
2/3 · β + α)

interpolation between grids and restriction asymptotically cost the
same as smoothing
Q: why? and does this still hold for smoothed algebraic multigrid?
A: generally (nearly-)adjacent nodes in the mesh are combined,
smoothing propagates information also only from adjacent nodes

assuming m0 = m and mi = mi−1/2, need O(log(P)) levels before
subgrid can be solved by one processor, so overall cost is

O(m3/P · γ + m2/P2/3 · β + log(P) · α)

so SPME with FFT may be slightly more synchronization-efficient

Short pause

General fast integral equation solvers Barnes-Hut

Barnes-Hut

If the particle distribution is nonuniform, a regular grid is unsuitable

main alternative is tree-based decomposition

subdivide space recursively until each cell contains O(k) particles

in 1D, obtain binary-tree
in 2D, obtain quad-tree
in 3D, obtain oct-tree

compute a centered mass/charge for each tree node or r terms of a
Taylor series for higher accuracy

calculate forces between far-away particles in far-away cells, based on
interaction with particle and a mass/charge at a higher-level tree node

General fast integral equation solvers Barnes-Hut

Barnes-Hut

Diagram taken from course webpage of Mowry and Railing (CMU)

General fast integral equation solvers H-matrices

Hierarchical matrices

H-matrices or HSS (hierarchically semi-separable matrices), introduced by
Hackbusch, are an algebraic representation of a Barnes-Hut-like algorithm

let A ∈ N × N encode the desired interactions
given a binary tree partitioning, we split up

A =

[
A11 A12

A21 A22

]
if the partitioning is balanced among particles Aij are n/2× n/2
Q: how would a quad tree partitioning look like?
A: a quad tree partitioning would give

A =


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


in an H-matrix each Aii is partitioned recursively and each
off-diagonal block Aij is rank r

General fast integral equation solvers H-matrices

Computation with H-matrices

A step in Barnes-Hut simulation looks like a matrix-vector product with a
H-matrix, y = Ax

consider the 1D case (binary tree), 2D and 3D are similar

to update first partition of particles, we perform y1 = A11x1 + A12x2

thus for the particles in the second partition we can perform U1V
T
2 x2,

where A12 = U1V
T
2 and U1,V

T
2 ∈ Rn×r

if we just have a single center of mass r = 1, the off-diagonal blocks
are rank 1

Q: how much computation is required for y = Ax if r is a constant
and there are O(log(n)) levels?

A: T (n) = 2T (n/2) + O(rn) = O(rn log(n)), this is also the amount
of storage needed for A

its also possible to define other operations including matrix-matrix
multiplication and LU factorization with H-matrices

General fast integral equation solvers H-matrices

Communication cost with H-matrices

Lets consider parallel H-matrix-vector multiplication

lets assume r is small

Q: if we use a 1D blocking for U1 and V2, how much communication
is required for U1V

T
2 x2?

A: O(r)

thus, given a proper blocking, the BSP complexity is

T (n,P, r) = T (n/2,P/2, r) + O(nr/P · γ + r · β + α)

= O(nr log(n)/P · γ + r log(P) · β + log(P) · α)

construction of the H-matrix (oct-tree) costs somewhat more

when partitions are not load balanced, processors should be
partitioned accordingly, and height of tree may increase

General fast integral equation solvers Fast multipole method

Fast multipole method (FMM)

The FMM algorithm obtains linear complexity for integral equations

there are many derivations of FMM for different types of equations

the first, by Greengard and Rokhlin was for 2D electrostatics

like in Barnes-Hut a tree of particles is defined, but in FMM we
interact non-leaf nodes in the tree, so that every particle interacts
with O(1) tree nodes

for each tree node a multipole (inner) and Taylor (outer) expansion is
defined consisting of r = O(log(1/ε)) terms for accuracy ε

thus, error is controlled explicitly by the size of the expansion
a multipole expansion is a special type of Taylor expansion

transformation operators are defined to ‘shift’ multipole and Taylor
expansions, and to convert between the two

General fast integral equation solvers Fast multipole method

FMM algorithm

The computation in FMM proceeds as follows

1 perform interactions among local particles

2 upward pass – generate multipole expansion for every tree node
starting from leaves

3 downward pass – generate local expansion for every tree node starting
from root

General fast integral equation solvers H2-matrices

FMM as H2-matrices

H2-matrices provide an alternative closely-related way for solving integral
equations with linear complexity

H2-matrices may be seen as a specialization of H-matrices
we represent each off-diagonal block at the lth level as

A
(l)
ij = W

(l)
i K

(l)
ij (V

(l)
j)T

if each K
(l)
ij ∈ Rr×r this is just an H-matrix

what makes H2-matrices special is a nested structure of the basis

W
(l)
i and V

(l)
j

in particular transformation matrices R
(l)
i , T

(l)
j define these with

respect to the finer level l − 1
if branch factor is s and matrices are appropriately indexed then

W
(l)
i =


W

(l−1)
(i−1)s+1

...

W
(l−1)
is

R
(l)
i , V

(l)
j =


V

(l−1)
(j−1)s+1

...

V
(l−1)
js

T
(l)
j

General fast integral equation solvers H2-matrices

Depiction of H2-matrices

Depicted are (V
(l−1)
js)T and (T

(l)
j)T and not the other parts of the updates

General fast integral equation solvers H2-matrices

Computation with H2-matrices

Matrix-vector multiplication with a H2-matrix can be dine in O(nr)
operations

requires forward transformation, multiplication, and backward
transformation

can compute (V
(l)
j)Tx

(l)
j = (T

(l)
j)T

∑s
k=1(V

(l−1)
(j−1)s+k)Tx

(l−1)
j

requires O(r2) work

typically s = 1 and r = log(1/ε)

at leaves need to perform O(rn) work

naive parallelization of tree would yield BSP complexity (assuming
small r)

T (n,P, r) = O(nr/P · γ + r log(P) · β + log(P) · α)

may be possible to shed log(P) factor

	Fast solvers given uniform density
	Molecular dynamics review
	3D Poisson solvers

	General fast integral equation solvers
	Barnes-Hut
	H-matrices
	Fast multipole method
	H2-matrices

