
CS 598: Communication Cost Analysis of Algorithms
Lecture 26: Hierarchically semi-separable (HSS) matrices

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 28, 2016



Hierarchically semi-separable matrices Structure and definition

HSS matrix, two levels

Hierarchically semi-separable (HSS) matrix, space padded around each
matrix block, which are uniquely identified by dimensions and color



Hierarchically semi-separable matrices Structure and definition

HSS matrix, three levels



Hierarchically semi-separable matrices Structure and definition

HSS matrix formal definition

Consider matrix A =

[
A11 A12

A21 A22

]
the l-level HSS factorization is

Hl(A) =

{
{U,V,T12,T21,A11,A22} : l = 1

{U,V,T12,T21,Hl−1(A11),Hl−1(A22)} : l > 1

the low-rank representation of the diagonal blocks is given by
A21 = Ū2T21V̄

T
1 , A12 = Ū1T12V̄

T
2 where for a ∈ {1, 2},

Ūa = Ua(Hl(A)) =


Ua : l = 1[
U1(Hl−1(Aaa)) 0

0 U2(Hl−1(Aaa))

]
Ua : l > 1

V̄a = Va(Hl(A)) =


Va : l = 1[
V1(Hl−1(Aaa)) 0

0 V2(Hl−1(Aaa))

]
Va : l > 1



Hierarchically semi-separable matrices Matrix–vector multiplication

HSS matrix–vector multiplication

We now consider computing y = Ax

with H1(A) we would just compute y1 = A11x1 + U1(T12(VT
2 x2))

and y2 = A22x2 + U2(T21(VT
1 x1))

for general Hl(A) we will perform an up-sweep and a down-sweep

up-sweep computes w =

[
V̄T

1 x1

V̄T
2 x2

]
at every tree node

down-sweep computes a tree sum of

[
Ū1T12w2

Ū2T21w1

]
the up-sweep is performed by using the nested structure of V̄

w =W(Hl(A), x) =



[
VT

1 0

0 VT
2

]
x : l = 1[

VT
1 0

0 VT
2

][
W(Hl−1(A11), x1)

W(Hl−1(A22), x2)

]
: l > 1



Hierarchically semi-separable matrices Matrix–vector multiplication

HSS matrix–vector multiplication, down-sweep

We now employ each w =W(Hl(A), x) from the root to the leaves to get

y = Ax =

[
U1T12w2

U2T21w1

]
+

[
A11x1

A22x2

]
=

[
Ū1 0
0 Ū2

] [
0 T12

T21 0

]
w +

[
A11 0
0 A22

]
x

using the nested structure of Ūa and v =

[
U1 0
0 U2

] [
0 T12

T21 0

]
w,

ya =

[
U1(Hl−1(Aaa)) 0

0 U2(Hl−1(Aaa))

]
va + Aaaxa for a ∈ {1, 2}

which gives the down-sweep recurrence

y = Ax + z = Y(Hl(A), x, z) =



[
U1q1

U2q2

]
+

[
A11x1

A22x2

]
: l = 1[

Y(Hl−1(A11), x1,U1q1)

Y(Hl−1(A22), x2,U2q2)

]
: l > 1

where q =

[
0 T12

T21 0

]
W(Hl(A), x) + z



Hierarchically semi-separable matrices Matrix–vector multiplication

Prefix sum as HSS matrix–vector multiplication

We can express the n-element prefix sum y(i) =
∑i−1

j=1 x(j) as

y = Lx where L =

[
L11 0
L21 L22

]
=


0 0 · · · 0

1 0 · · ·
...

...
. . .

. . .
...

1 · · · 1 0



L is an H-matrix since L21 = 1n1n
T =

[
1 · · · 1

]T [
1 · · · 1

]
L also has rank-1 HSS structure, in particular

Hl(L) =


{
12, 12,

[
0
]
,
[
1
]
,
[
0
]
,
[
0
]}

: l = 1{
14, 14,

[
0
]
,
[
1
]
,Hl−1(L11),Hl−1(L22)

}
: l > 1

so each U,V, Ū, V̄ is a vector of 1s, T12 =
[
0
]

and T21 =
[
1
]



Hierarchically semi-separable matrices Matrix–vector multiplication

Prefix sum HSS up-sweep

We can use the HSS structure of L to compute the prefix sum of x

recall that the up-sweep recurrence has the general form

w =W(Hl(A), x) =



[
VT

1 0

0 VT
2

]
x : l = 1[

VT
1 0

0 VT
2

][
W(Hl−1(A11), x1)

W(Hl−1(A22), x2)

]
: l > 1

for the prefix sum this becomes

w =W(Hl(L), x) =


x : l = 1[

1 1 0 0

0 0 1 1

][
W(Hl−1(L11), x1)

W(Hl−1(L22), x2)

]
: l > 1

so the up-sweep computes w =

[
S(x1)
S(x2)

]
where S(a) =

∑
i a(i)



Hierarchically semi-separable matrices Matrix–vector multiplication

Prefix sum HSS down-sweep

The down-sweep has the general structure

y = Y(Hl(A), x, z) =



[
U1 0

0 U2

]
q +

[
A11 0

0 A22

]
x : l = 1[

Y(Hl−1(A11), x1,U1q1)

Y(Hl−1(A22), x2,U2q2)

]
: l > 1

where q =

[
0 T12

T21 0

]
W(Hl(A), x) + z, for the prefix sum:[

0 T12

T21 0

]
W(Hl(L), x) =

[
0 0
1 0

] [
S(x1)
S(x2)

]
=

[
0
S(x1)

]
= q− z

y = Y(Hl(L), x, z) =



[
z(1)

x(1) + z(2)

]
: l = 1[

Y(Hl−1(L11), x1, 12z(1))

Y(Hl−1(L22), x2, 12(S(x1) + z(2))

]
: l > 1

initially the prefix z = 0 and it will always be the case that z(1) = z(2)



Short pause



Cost of HSS matrix–vector multiplication Basic cost analysis

Cost of HSS matrix–vector multiplication

The down-sweep and the up-sweep perform small dense matrix–vector
multiplications at each recursive step

lets assume k is the dimension of the leaf blocks and the rank at each
level (number of columns in each Ua, Va)

the computation cost for both the down-sweep and up-sweep is

T (n, k) = 2T (n/2, k) + O(k2 · γ), T (k, k) = O(k2 · γ)

T (n, k) = O(nk · γ)

Q: what parallelization approach would be sensible for small k?

if we assign each tree node to a single processor for the first log2(P)
levels, and execute a different leaf subtree with a different processor

T (n, k ,P) = 2T (n, k ,P/2) + O(k2 · γ + k · β + α)

= O((nk/P + k2 log(P)) · γ + k log(P) · β + log(P) · α)



Cost of HSS matrix–vector multiplication Reducing synchronization cost

Synchronization-efficient HSS multiplication

Our first algorithm would require O(log(P)) BSP supersteps

Q: what would we need to do to reduce this to O(1)?
we can observe that the leaf subtrees can be computed independently

Tleaf-subtrees(n, k,P) = O(nk/P · γ + k · β + α)

thus we can focus on doing the up-sweep and down-sweep on a binary
tree with log2(P) levels

executing the root subtree sequentially would yield a cost of

Troot-subtree(n, k ,P) = O(Pk2 · γ + Pk · β + α)

this could be prohibitive on a large number of processors
instead have P r (r < 1) processors compute subtrees with P1−r leaves,
then recurse on the P r roots

Trec-tree(k ,P) = Trec-tree(k ,P r ) + O(P1−rk2 · γ + P1−rk · β + α)

the algorithm has BSP complexity

Trec-tree(k ,P) = O(P1−rk2 · γ + P1−rk · β + log1/r (log(P)) · α)



Cost of HSS matrix–vector multiplication Reducing synchronization cost

Synchronization-efficient HSS multiplication
We can do better by exploiting what the HSS tree nodes are doing

again lets focus on the top tree with P leaves (leaf subtrees)

lets try to assign each processor a unique path from a leaf to the root

given w =W(Hl(A), x) at every node its clear each processor can compute
a down-sweep path in the subtree independently

for the up-sweep, we can realize that the tree applies a linear transformation,
so we can sum the results computed in each path

for each tree node, there is a contribution from every processor assigned a
leaf of the subtree of the node

therefore, there are P − 1 sums of a total of O(P log(P)) contributions, for
a total of O(kP log(P)) elements

we can do these with min(P, k log2(P)) processors, each obtaining
max(P, k log2(P)) contributions, so

Troot-paths(k ,P) = O(k2 log(P) · γ + (k log(P) + P) · β + α)

we have not improved the asymptotic number of messages, but only the
number of synchronizations, and can leverage efficient reductions



Cost of HSS matrix–vector multiplication HSS matrix times dense matrix

HSS multiplication by multiple vectors

Consider multiplication C = AB where A ∈ Rn×n is HSS and B ∈ Rn×b

lets consider the case that P ≤ b � n

if we assign each processor all of A, each can compute a column of C
simultaneously

this requires a prohibitive amount of memory usage

Q: could you propose a good BSP algorithm for this problem?

A: use transpose like in the b scans problem

perform leaf-level multiplications, processing n/P rows of B with each
processor (call intermediate C̄)
transpose C̄ and apply log2(P) root levels of HSS tree to columns of C̄
independently

this algorithm requires replication only of the root O(log(P)) levels of
the HSS tree, O(Pb) data

for large k or larger P different algorithms may be desirable


	Hierarchically semi-separable matrices
	Structure and definition
	Matrix–vector multiplication

	Cost of HSS matrix–vector multiplication
	Basic cost analysis
	Reducing synchronization cost
	HSS matrix times dense matrix


