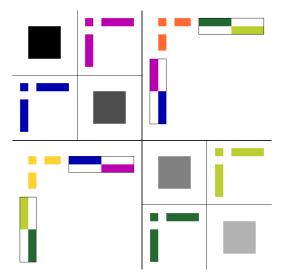
CS 598: Communication Cost Analysis of Algorithms Lecture 27: HSS matrix construction, electronic structure calculations

Edgar Solomonik

University of Illinois at Urbana-Champaign

November 30, 2016

HSS matrix, two levels



Hierarchically semi-separable (HSS) matrix, space padded around each matrix block, which are uniquely identified by dimensions and color

Constructing the HSS factorization

Sometimes we can obtain $\mathcal{H}_{l}(\mathbf{A})$ implicitly (e.g. via multipole and Taylor expansions), but general methods can be applied to arbitrary matrices

- we are most interested in cases when **A** is sparse or structured, if a dense matrix has HSS structure one should try to not construct the dense matrix explicitly
- a naive algorithm would construct $\mathcal{H}_{l}(\mathbf{A})$ from the leaves to the root
 - project off-diagonal blocks onto the row/column span of their children
 - do QR with column pivoting or truncated SVD
- this would have cost $O(n^2k)$ and may be sensible for a dense matrix, but projections would not preserve sparsity
- randomized methods provide substantially more flexibility

Interpolative decomposition

To define an efficient and stable randomized algorithm for HSS factorization we will leverage Interpolative decomposition (ID)

• the ID factorization of a matrix $\mathbf{A} \in \mathbb{R}^{m imes n}$ has the form

$$\mathbf{A} \approx \mathbf{W} \cdot \mathbf{Z}^\mathsf{T}$$

where $\mathbf{W} \in \mathbb{R}^{m \times k}$ is a subset of columns of **A**, and $\mathbf{Z} \in \mathbb{R}^{n \times k}$

- \bullet we can alternatively or additionally enforce that ${\bf Z}^{\sf T}$ is a subset of rows of ${\bf A}$
- a good ID factorization can be found via the SVD $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\mathsf{T}}$ by
 - calculating the statistical column leverage scores of $\bm{A},$ given by the norms of the columns of \bm{V}^T
 - picking ${\bf W}$ to be the columns of ${\bf A}$ that have largest leverage scores and solving linear systems or least squares to obtain ${\bf Z}$
- the ID decomposition will allow us to construct nested basis matrices in the HSS factorization and can lead to better numerical stability
- Q: why is it reasonable to expect that a low-rank matrix can be approximated using only a subset of its rows and columns?

Randomized HSS factorization

We follow the approach of Martinsson 2011 "A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix"

- for simplicity, assume \bm{A} is symmetric, so its off-diagonal blocks are $\bm{U}_1\bm{U}_2^{\mathsf{T}}$ and $\bm{U}_2\bm{U}_1^{\mathsf{T}}$
- we start by picking a random matrix $\Psi \in \mathbb{R}^{n \times (k+10)}$ where 10 is some oversampling and compute $\mathbf{S} = \mathbf{A} \Psi$
 - the same step is done to compute a randomized low-rank factorization
 - if **A** is dense it could make sense to make Ψ a randomized DFT-transform (SRFT), while if **A** is sparse or structured, we can just pick Ψ to be Gaussian random and exploit fast multiplication by **A**
- we construct the HSS factorization for all levels from a single S
- ${\scriptstyle \bullet}$ we modify ${\bf S}$ based on the previous (already factorized) levels

$$\mathcal{R}_{l}(\mathbf{A}, \mathbf{S}) = \mathbf{S} - \begin{bmatrix} \mathbf{A}_{11} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{22} \end{bmatrix} \mathbf{S} = \begin{bmatrix} \mathcal{R}_{l-1}(\mathbf{A}_{11}, \mathbf{S}_{1}) \\ \mathcal{R}_{l-1}(\mathbf{A}_{22}, \mathbf{S}_{2}) \end{bmatrix} - \begin{bmatrix} \mathbf{0} & \mathbf{A}_{12} & \mathbf{0} & \mathbf{0} \\ \mathbf{A}_{21} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_{34} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}_{43} & \mathbf{0} \end{bmatrix} \mathbf{S}$$

HSS factorization via interpolative decomposition

At each recursive step, we can use ID and enforce that both factors are row/column samples

- the two children in the up-sweep recursive tree each provide k sample rows and columns
- we can use the ID decomposition to subsample the best k rows and columns out of 2k
- in the symmetric case, the rows/columns are the same
- to get the ID, we perform a QR of a matrix of size $n \times (k + 10)$ at each level (where *n* is the number of rows in $\overline{\mathbf{U}}$ at that level)
- to compute $\mathcal{R}_{l}(\mathbf{A}, \mathbf{S})$, we need to multiply \mathbf{S} by $\overline{\mathbf{U}}$ and $\overline{\mathbf{V}}$, which requires $O(nk^{2})$ work for all nodes at each level
- assuming k < n/P, and Cholesky-QR2 is used, the cost after computing S is at least

 $O(nk^2\log(n)/P\cdot\gamma+k^2\log(P)\cdot\beta+\log(P)^2\cdot\alpha)$

Short pause

Electronic structure calculations

Models of chemical systems calculate the energy of a collection of atoms

- to understand a molecule or molecular system, we seek the configuration in which its energy is lowest
- this configuration is given by where the atom and electrons are
 - electrons occupy orbitals around each atom
- atoms are much heavier than electrons, so the configuration of atoms and electrons are almost always considered separately
 - this is the Born-Oppenheimer approximation
- the interactions of a system of *n* electrons are encoded in a *Hamiltonian operator H*
- the wavefunction $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_n)$ and its energy E is the eigenfunction of the Hamiltonian with the smallest eigenvalue

$$H\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_n)=E\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_n)$$

• $\Psi(\mathbf{r}_1, \dots, \mathbf{r}_n)$ is a complex function of all electron coordinates • $\Psi^*(\mathbf{r}_1, \dots, \mathbf{r}_n)\Psi(\mathbf{r}_1, \dots, \mathbf{r}_n)$ gives the probability of observing the electrons at $\mathbf{r}_1, \dots, \mathbf{r}_n$

Time-independent Schrödinger equation

The Schrödinger equation describes electronic interactions

- most often, a time-independent, nonrelativistic form is used
- in this simplified case the N-particle Hamiltonian has the form

$$H = -\frac{1}{2m}\sum_{i=1}^{N}\nabla_i^2 + \sum_{i=1}^{N}V(\mathbf{r_i}) + \sum_{i=1}^{N}\sum_{j$$

- the one-particle component $V(\mathbf{r_i})$ encodes interactions between electrons and atoms
- the two-particle component $U(\mathbf{r_i}, \mathbf{r_j})$ encodes electron–electron interactions
- Ψ is generally a function of all electrons, to obtain an approximate solution a simpler *ansatz* is often used

Density Function Theory (DFT)

DFT is a common method for electronic structure calculations

• it uses a wavefunction ansatz of a *Hartree product* of *N* single-particle wavefunctions

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_n)\approx\Psi_1(\mathbf{r}_1)\cdots\Psi_N(\mathbf{r}_n)$$

• the electron (probability) density given this ansatz is

$$n(\mathbf{r}) = \sum_{i=1}^{n} \int \cdots \int (\Psi^* \Psi)(\mathbf{r}_1, \dots, \mathbf{r}_{i-1}, \mathbf{r}, \mathbf{r}_{i+1}, \dots, \mathbf{r}_n) d\mathbf{r}_1 \cdots d\mathbf{r}_{i-1} d\mathbf{r}_{i+1} \cdots d\mathbf{r}_n$$
$$\approx \sum_{i=1}^{n} \Psi^*_i(\mathbf{r}) \Psi_i(\mathbf{r})$$

• Hohenberg-Kohn theorem: there exists a unique 'functional' F with

$$E = F(n(\mathbf{r}))$$

Kohn–Sham equations

DFT finds the single-electron wavefunctions using Kohn-Sham equations

$$\Big[-\frac{1}{2m}\nabla^2+V(\mathbf{r})+V_H(\mathbf{r})+V_{\mathsf{XC}}(\mathbf{r})\Big]\Psi_i(\mathbf{r})=\mathcal{E}_i\Psi_i(\mathbf{r})$$

- these equations replace the many-body Hamiltonian operator
- the two-electron interactions are now approximated by a potential between each single-electron wavefunction and the density $n(\mathbf{r})$
- $V_H(\mathbf{r})$ is the Hartree potential holding Coulomb repulsion
- V_{XC}(r) is an approximation to the exchange-correlation potential (incl. Pauli exclusion)
- the key part of the aforementioned functional is $V_{XC}(\mathbf{r})$
- there is no known general representation for exchange-correlation and much reason to believe there is no simple general form
- various approximations make sense in different application contexts

Solving the Kohn–Sham equations

The Kohn–Sham equations depend on the density and define the single particle wavefunctions

- the electron density is a function of the single particle wavefunctions
- so DFT is solved iteratively
 - **(**) define an initial guess for the density $n^{(0)}(\mathbf{r})$
 - **2** solve the Kohn–Sham equations defined by $n^{(j)}(\mathbf{r})$ to get $\Psi_i^{(j)}(\mathbf{r})$
 - Scalculate a new Kohn-Sham electron density

$$n^{(j+1)}(\mathbf{r}) = \sum_{i=1}^{n} \Psi_{i}^{(j)}(\mathbf{r})^{*} \Psi_{i}^{(j)}(\mathbf{r})$$

- a basis must be defined for the spatial domain to get a numerical representation of $n(\mathbf{r})$
 - Gaussian basis functions are often used and have numerical advantages
 - basis functions can also be localized around orbitals, enabling sparse representations of the density and lower-order scaling

Computing DFT

Typically m = O(n) basis functions are selected

- each single-electron wavefunction is then a vector of dimension m
- there are many ways to formulate and solve the Kohn-Sham equations numerically
- with a Gaussian basis, they are often solved using FFT and involve
 - matrix multiplication and QR with matrices of dimension $m \times n$
 - FFT on each wavefunction vector
 - eigendecomposition of $n \times n$ symmetric matrix
- they can also be done in real-space using an $m \times m$ eigendecomposition
- recent work on methods (see CP2K application) that achieve O(n) scaling by computing the sign function of $m \times m$ sparse matrix (using localized basis-functions)

• sign function can be found by repeated squaring like $D_{j+1} = 3D_i^2 - 2D_i^3$

• the communication cost of most DFT methods is easily derived from the complexity of dense linear algebra routine

Hartree–Fock method

The Hartree–Fock (HF) method provides a more accurate representation of electron exchange

- HF is still a mean-field treatment that does not treat electron-electron interactions explicitly
- HF uses a Slater determinant as a wavefunction ansatz

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_n)\approx \det\left(\begin{bmatrix}\Psi_1(\mathbf{r}_1)&\cdots&\Psi_1(\mathbf{r}_2)\\\vdots&&\vdots\\\Psi_n(\mathbf{r}_1)&\cdots&\Psi_n(\mathbf{r}_n)\end{bmatrix}\right)$$

- this is the same as taking all possible coordinate permutations of the Hartree product and assigning signs to each term so that the result is *antisymmetric* to any permutation of a coordinate pair
- the antisymmetry allows the wavefunction to satisfy the Pauli exclusion principle

Self Consistent Field iteration

HF is solved by the Self Consistent Field (SCF) iteration, similar to DFT

- an *m*-dimensional spatial basis again needs to be introduced
- an $m \times m$ density matrix **D** is computed iteratively
- the Fock matrix is given by

$$\mathbf{F}_{ij} = \mathbf{H}_{ij}^{\text{core}} + \sum_{kl} \mathbf{D}_{kl} (2(ij|kl) - (ik|jl))$$

where $\mathbf{H}_{ij}^{\text{core}}$ is the core-Hamiltonian and (ij|kl) are the electron–repulsion integrals

• the matrix **C** of *k* eigenvectors of **F** with the smallest eigenvalues defines **D**

$$\mathbf{D} = \mathbf{C}\mathbf{C}^{\mathsf{T}}$$

• SCF iteratively computes **F** from **D** then a new **D** from **F**

Electron-repulsion integral computation

A key difference between DFT and HF is the need to compute the electron–repulsion integrals

- these are generally screened and only a subset is computed
- an integral (ij|kl) is derived from D_{ab} where $\{a, b\} \in \{i, j, k, l\}$ and contributes to each F_{ab}
- both ${\bf F}$ and ${\bf D}$ are symmetric so we only care about ${4 \choose 2}=6$ permutations
- Q: if we compute a 4D block of (ij|kl) of size O(M) how many entries of **F** and **D** do we touch?
- A: the projections from the 4D block onto 2D subspaces are of size $\Theta(\sqrt{M})$
- thus computing $O(n^4)$ ERI integrals with P processors can be done with $O(n^2/\sqrt{P})$ communication
- to compute a screened subset of $\Theta(M)$ integrals, a generalized Loomis-Whitney theorem can be used to show that $\Omega(\sqrt{M/P})$ communication is generally required

Configuration interaction

Hartree-Fock represents the wavefunction as a single Slater determinant

- given a basis set of m > n functions (orbitals), we can define $\binom{m}{n}$ Slater determinants of *n*-electrons, which 'occupy' orbitals
- full configuration-interaction (full CI) works with a maximal set of determinants
- by computing the eigendecomposition of the resulting matrix, an exact solution can be obtained for the electronic Schrödinger equation given the basis set
- thus full-CI method is exact in the 'basis set limit', but has exponential cost
- other CI methods select a subset of determinants by using knowledge of the electronic system

Moller-Plesset perturbation theory

Moller-Plesset perturbation theory, modifies the Hamiltonian slightly to take into account some 'excited-states' configurations

- considering single-electron excitations has no effect on the energy, as shown by the *Brillouin theorem*
- thus, MP2 and MP3, which consider second and third order perturbations are the primary methods employed
- MP2 can be computed directly from the ERI tensor as a correction, requiring $O(n^4)$ cost
- MP3 requires a tensor contraction between two order four tensors, requiring $O(n^6)$ cost
- the dominant part of the cost in MP3 is the tensor contraction, which can be done by matrix-matrix multiplication

Coupled-cluster

A more computationally robust alternative to CI is presented by Coupled-cluster (CC) methods

- CC methods try to take into account electron correlation, by taking into account all possible excitations of *k* electrons
- there is a hierarchy of coupled-cluster methods
 - CCSD: (singles and doubles) k = 2, $O(n^6)$ cost
 - CCSDT: (singles, doubles, and triples) k = 3, $O(n^8)$ cost
 - CCSDTQ: (singles, double, triples, and quadruples) k = 4, $O(n^{10})$ cost
- coupled cluster methods use an wavefunction ansatz of the form $\Psi \approx e^{T_1+T_2+\cdots}\Psi_0$ where Ψ_0 is the HF slater determinant
- the exponential is expanded in polynomial form and truncated, resulting in a set of tensor contractions that define possible electron state transitions
- the methods are dominated by matrix-multiplication (tensor contractions)
- the tensors have a lot of symmetry and sometimes are sparse or low-rank