CS 598: Communication Cost Analysis of Algorithms

Lecture 28: Convolutional neural networks

Edgar Solomonik
University of Illinois at Urbana-Champaign

December 5, 2016

Convolutional neural networks Motivation

Convolutional neural networks (CNNs)

Feature maps

Convolutions i Co i St i Fully

@ CNNs consist of a set of layers, which convolve a 2D or 3D dataset
with a set of 2D filters and subsample the result

@ they are popular in machine learning with applications including
image recognition and recommender systems

image source : https://commons.wikimedia.org/wiki/File:Typical_cnn.png

https://commons.wikimedia.org/wiki/File:Typical_cnn.png

Convolutional neural networks 1D convolutions

1D convolution

Given x € R" and f € R™, n > m, compute Rr+m-1 5 y=Fxxso
min(m,k)
Vke[ln+m—1], y(k)= > F()x(k—j+1)

Jj=max(1,k—n)

@ the convolution can also be interpreted as matrix-vector multiplication
with a banded Toeplitz matrix, e.g. for n =4, m=2

FO) 0 0 0

f(1) FO) 0 0

y=| 0 f(1) F0O) 0 |x=Dy(f)x
0 0 f(1) f(0)
o 0 0 f(1)

where D,(f) € R(m+n=1)xn is 3 Toeplitz matrix generated by F
@ we also have
y=xxf=Dy(f)x =Dpn(x)f

but it does not make sense to construct Dp,(x) since n > m

Convolutional neural networks 1D convolutions

Computing a 1D convolution

In lecture 9, we proved that a convolution can be done via a
(n+ m — 1)-dimensional Fourier transform

@ assuming n > m using an FFT would give the cost
Tip-rrr(n, P) = O(nlog(n)/P -+ nlog,,p(n)/P - B +log, p(n) - @)

@ alternatively, can compute the mn scalar products directly and sum
@ Q: what communication cost would this incur?

@ A: it depends on the relative dimensions of m, n

O(v/mn/P-B3) :n< mP

Tip-mm(m, n, P) = O(mn/P -~y + a) + {O(m) :n>mP

@ when n > m, the direct approach requires less communication

Convolutional neural networks 1D convolutions

Computing a 1D convolution

rather than communicating a block of D,(f) we should always
communicate a subset of f that implicitly represents it

e when n > mP, achieving O(m) communication requires taking
advantage of a good initial data layout

Q: what cache complexity would this algorithm incur for cache size H?
A: O(nmax(1,m/H) - v)
for comparison the FFT cache complexity is O(nlogy(n) - v)

Convolutional neural networks 1D convolutions

Many 1D convolutions

CNNs sometimes apply the same filter f to multiple datasets {x1,...,x,}
e given [xl x,} =X eR™ and f € R™, n > m, compute
{yl y,} =Y e R(mtm=1)xr

Viell,r], y;=Fx*x;=D,(F)x;

@ when fully expanded, the computation corresponds to

min(m,k)
Vie[l,rl,ke[lntm=1], Y(ki)= Y f()X(k—j+1,i)
Jj=max(1,k—n)

@ the set of convolutions can be computed via matrix multiplication

Y = D,(F)X

Convolutional neural networks 1D convolutions

Computing many 1D convolutions

Performing r FFTs achieves the complexity
Tap-rrr(r, n, P) = O(rnlog(n)/P -~y + /P -+ a)

so long as log,./p(n) = O(1)
@ the matrix multiplication Y = D,(f)X corresponds to a band with
dimensions m x n X r
@ we can compute Y = D,(f)X with complexity

Tap-mm(r,m,n,P) = O(rmn/P -~ + m- 5 + «)

by replicating f on all processors (which makes sense when rn > mP)
o taking the FFT of every subvector locally yields computation cost

O((rn/P + m)log(rn/P + m) - v)

Q: why is it not r(n/P 4+ m)log(n/P + m)?
o A: if we assign different columns of A to different processors, each
column is subdivided over P/r processors

Convolutional neural networks 1D convolutions

Convolving the same data with multiple filters

CNNs sometimes apply many filters {fy,...,f,} to a dataset x
@ given x € R"” and {fl fr} = F € R™", n> m, compute
{yl y,} = Y e R(mtm=1)xr

Vie[l,r], y;=fixx="Dy(fi)x =Dmn(x)f;

@ when fully expanded, the computation corresponds to

min(m,k)
Vie[l,rlke[ln+m=1], Y(ki)= Y F(,i)X(k—j+1)
Jj=max(1,k—n)

@ the set of convolutions can be computed via matrix multiplication

Y =Dp(x)F

Convolutional neural networks 1D convolutions

Computing convolutions with many filters

An FFT approach would still require an FFT for each filter and result
vector

Tep-rrr(r, n, P) = O(rnlog(n)/P-~v+ /P - 3 + «)

so long as log,./p(n) = O(1)
@ the matrix multiplication Y = D,,(x)F corresponds to a band with
dimensions n x m x r
@ we can compute Y = Dp,(x)F with complexity

Tap-mm(r,myn,P) = O(rmn/P -~ +n- 3+ «)

by replicating x on all processors (which makes sense when rm > nP)
@ computing a sub-band of dimensions b, x b, X b, requires b, entries
of x, bmb, entries of X and affects O(bpb, + bmb,) entries of Y
e for sufficiently large P, we can pick b, =1 and b, = b,, = \/rmn/P,
yielding cost

Tap-mm(r, myn, P) = O(rmn/P -~ + \/rmn/P - § + «)

Convolutional neural networks 1D convolutions

Many 1D convolutions with different filters

Other CNNs sum over applications of filters {f1, ..., f,} to datasets
{x1,...,%x/}
o compute y € R(mM=1)Xr where each x; € R" and each f; € R™

y=> fixxi=>Y Dn(f)x
i=1 i=1

e defining G = [D,,(fl) Dn(f,)} and X = {Xl X,
y = Gvec(X)

X1
@ X can be sparse with z nonzeros and vec (X) =

Xr

Convolutional neural networks 1D convolutions

Computing many 1D convolutions with different filters

If computing y = Gw directly, we should leverage the implicit form of G
(each k x k block can be formed with O(k) entries of f)
@ the sparsity structure of G is easier to see by folding it into a
rx (n+m—1) x n tensor H, then

r n
y() =" > H(i,j, k)X (k,i)
i=1 k=1
H(i,j,k) =0if k > jorj > k+n (each H(i,*,x) is banded Toeplitz)

@ a sub-band-block of entries of H of volume b, X b, X b, is

o represented by b, b, entries of {fq,...,f,}

e multiplied by b, b, entries of X

e sums into by, + b, entries of y
o fine-grained case: by, < m seek b,bypb, = ©(rmn/P) to minimize

O(brbm + brby) = O((rmn/P)(1/b, + 1/bm))

@ minimized by b,, = b, = \/rmn/P, possible so long as rn < mP,
yielding communication complexity O(\/rmn/P - f3)

Convolutional neural networks 1D convolutions

Cost of many 1D convolutions with different filters
The overall cost of the outlined approach is (so long as rn < mP)

Tennip(r,myn, P) = O(rmn/P -~ +\/rmn/P - 5 + «)
@ coarse-grained case: b, = m (assign each processor a subset of whole
filter vectors), seek b, b, = ©(rn/P) to minimize
W = O(b,m + by)
e minimized when b, = \/rmn/P, b, = \/rn/(Pm), again with
W = ©(y/rmn/P)
@ when X is sparse with z = frn nonzeros (f < 1) distributed randomly,
the term b, b, becomes fb, b, in the fine-grained case, and we set

b, = by = \/frmn/P yielding
Tsparse-CNN-lD(za m, P) = O(zm/P Y+ \/zm/P . ,8 + a)

@ these costs hold only in certain regimes of values r,m, n,z, P

1D convolution cross product

The most general variant of CNNs uses rs filters, sq input datasets, and
produces rg output datasets

@ each output dataset is a sum of one of r sets of s filters applied to
one of g sets of s input datasets

@ this can be interpreted as a matrix multiplication with dimensions
r X s X q where each product is a convolution

e if rsq > p, each convolution can be performed independently
e we should choose b bsb, = rsq/p to minimize

O(brbsm + bsbqn + brbqn)
o taking into account initial data layout, this becomes
O((brbs — rs/P)m + (bsbqy — sq/P)n + (b bg — rq/P)n)

@ the appropriate blocking, as well as the benefit of using FFT depends
on relative values of r,;s, q, m,n, P

2D convolutions
Given X € R™", F € R™*™ m < n, compute Y € R(r+m=1)x(ntm=1) g4

Vki, ko € [1,n+ m — 1],
min(m,ki) min(m,kz)

Y(ki, k)= > > Fli)X(k—ji+1 ke —j2+1)

Jji=max(1,ky—n) jo=max(1,ko—n)

@ we can evaluate the 2D convolution directly via O(m?n?) operations
@ alternatively, we can leverage the FFT, if Dy is the DFT matrix

F 0 X 0
Doym1YDnym—1 = (Dn+m—1 |:0 0:| Dn+m—1) © (Dner—l |:0 0:| Dn+m—1>

where o is the Hadamard product: (Ao B)(i,j) = A(i,j)B(i,))
o the resulting computation cost is O(n? log(n))

Convolutional neural networks = 2D convolutions

Communication complexity of 2D convolutions

Lets compare direct 2D convolution to FFT-based convolution
@ we can block the 4D index space, the total size of which is
approximately n X n X m x m
@ when n < mvV/P, we should subdivide this space into 4D blocks with
equal dimensions

Top-mm(m, n, P) = O(m?n? /P -~ + i; B+)

VP

@ Q: what approach should we take when n > mv/P?
@ A: we should replicate the filter F on all processors yielding complexity

Top-mm(m, n, P) = O(m*n? /P -y + m” - B+ a)
@ computing the 2D FFTs, when log,>,p(n) = O(1) has complexity
Top-rer(n, P) = O(n?log(n)/P -~ + n?/P - 3 +)

@ the computation complexity of the first approach can sometimes be
improved by doing FFT locally

Convolutional neural networks = 2D convolutions

Many 2D convolutions

We can also consider doing r convolutions with the same filter F
@ in this case X and Y become order 3 tensors
o performing 2D FFTs would usually yield the overall complexity

Two-rer(r, n, P) = O(rn?log(n)/P -~ + rm?/P - B + a)
o replicating the filter would be faster for sufficiently faster r, m
Tioo-mm(r, m,n, P) = O(rm*n?/P -~ 4+ m? - § +)
o if we use 2D FFT to compute each 4D block, the cost becomes
O((ny/r/P + m)?log(n) - v+ m? - B+ a)

@ generally, we can observe that the transition from 1D to 2D
convolutions does not significantly affect the parallelization strategies
and communication cost, a 2D CNN is about as hard as a 1D CNN
with datasets of size n? and a filter of size m?

	Convolutional neural networks
	Motivation
	1D convolutions
	2D convolutions

