
CS 598: Communication Cost Analysis of Algorithms
Lecture 28: Convolutional neural networks

Edgar Solomonik

University of Illinois at Urbana-Champaign

December 5, 2016



Convolutional neural networks Motivation

Convolutional neural networks (CNNs)

CNNs consist of a set of layers, which convolve a 2D or 3D dataset
with a set of 2D filters and subsample the result
they are popular in machine learning with applications including
image recognition and recommender systems

image source : https://commons.wikimedia.org/wiki/File:Typical_cnn.png

https://commons.wikimedia.org/wiki/File:Typical_cnn.png


Convolutional neural networks 1D convolutions

1D convolution
Given x ∈ Rn and f ∈ Rm, n ≥ m, compute Rn+m−1 3 y = f ∗ x so

∀k ∈ [1, n + m − 1], y(k) =

min(m,k)∑
j=max(1,k−n)

f (j)x(k − j + 1)

the convolution can also be interpreted as matrix-vector multiplication
with a banded Toeplitz matrix, e.g. for n = 4,m = 2

y =


f (0) 0 0 0
f (1) f (0) 0 0

0 f (1) f (0) 0
0 0 f (1) f (0)
0 0 0 f (1)

 x = Dn(f )x

where Dn(f ) ∈ R(m+n−1)×n is a Toeplitz matrix generated by f
we also have

y = x ∗ f = Dn(f )x = Dm(x)f
but it does not make sense to construct Dm(x) since n ≥ m



Convolutional neural networks 1D convolutions

Computing a 1D convolution

In lecture 9, we proved that a convolution can be done via a
(n + m − 1)-dimensional Fourier transform

assuming n ≥ m using an FFT would give the cost

T1D-FFT(n,P) = O(n log(n)/P · γ + n logn/P(n)/P · β + logn/P(n) · α)

alternatively, can compute the mn scalar products directly and sum
Q: what communication cost would this incur?
A: it depends on the relative dimensions of m, n

T1D-MM(m, n,P) = O(mn/P · γ + α) +

{
O(
√

mn/P · β) : n ≤ mP
O(m · β) : n > mP

when n� m, the direct approach requires less communication



Convolutional neural networks 1D convolutions

Computing a 1D convolution

rather than communicating a block of Dn(f ) we should always
communicate a subset of f that implicitly represents it
when n > mP, achieving O(m) communication requires taking
advantage of a good initial data layout
Q: what cache complexity would this algorithm incur for cache size H?
A: O(n max(1,m/H) · ν)

for comparison the FFT cache complexity is O(n logH(n) · ν)



Convolutional neural networks 1D convolutions

Many 1D convolutions
CNNs sometimes apply the same filter f to multiple datasets {x1, . . . , xr}

given
[
x1 . . . xr

]
= X ∈ Rn×r and f ∈ Rm, n ≥ m, compute[

y1 . . . y r

]
= Y ∈ R(n+m−1)×r

∀i ∈ [1, r ], y i = f ∗ x i = Dn(f )x i

when fully expanded, the computation corresponds to

∀i ∈ [1, r ], k ∈ [1, n+m−1], Y (k, i) =

min(m,k)∑
j=max(1,k−n)

f (j)X(k−j+1, i)

the set of convolutions can be computed via matrix multiplication

Y = Dn(f )X



Convolutional neural networks 1D convolutions

Computing many 1D convolutions
Performing r FFTs achieves the complexity

Tr1D-FFT(r , n,P) = O(rn log(n)/P · γ + rn/P · β + α)

so long as lognr/P(n) = O(1)

the matrix multiplication Y = Dn(f )X corresponds to a band with
dimensions m × n × r
we can compute Y = Dn(f )X with complexity

Tr1D-MM(r ,m, n,P) = O(rmn/P · γ + m · β + α)

by replicating f on all processors (which makes sense when rn ≥ mP)
taking the FFT of every subvector locally yields computation cost

O((rn/P + m) log(rn/P + m) · γ)

Q: why is it not r(n/P + m) log(n/P + m)?
A: if we assign different columns of A to different processors, each
column is subdivided over P/r processors



Convolutional neural networks 1D convolutions

Convolving the same data with multiple filters
CNNs sometimes apply many filters {f 1, . . . , f r} to a dataset x

given x ∈ Rn and
[
f 1 · · · f r

]
= F ∈ Rm×r , n ≥ m, compute[

y1 . . . y r

]
= Y ∈ R(n+m−1)×r

∀i ∈ [1, r ], y i = f i ∗ x = Dn(f i )x = Dm(x)f i

when fully expanded, the computation corresponds to

∀i ∈ [1, r ], k ∈ [1, n+m−1], Y (k, i) =

min(m,k)∑
j=max(1,k−n)

f (j , i)X(k−j+1)

the set of convolutions can be computed via matrix multiplication

Y = Dm(x)F



Convolutional neural networks 1D convolutions

Computing convolutions with many filters
An FFT approach would still require an FFT for each filter and result
vector

Tr1D-FFT(r , n,P) = O(rn log(n)/P · γ + rn/P · β + α)

so long as lognr/P(n) = O(1)

the matrix multiplication Y = Dm(x)F corresponds to a band with
dimensions n ×m × r
we can compute Y = Dm(x)F with complexity

Tr1D-MM(r ,m, n,P) = O(rmn/P · γ + n · β + α)

by replicating x on all processors (which makes sense when rm ≥ nP)
computing a sub-band of dimensions bn × bm × br requires bn entries
of x, bmbr entries of X and affects O(bnbr + bmbr ) entries of Y
for sufficiently large P, we can pick br = 1 and bn = bm =

√
rmn/P,

yielding cost

Tr1D-MM(r ,m, n,P) = O(rmn/P · γ +
√

rmn/P · β + α)



Convolutional neural networks 1D convolutions

Many 1D convolutions with different filters

Other CNNs sum over applications of filters {f 1, . . . , f r} to datasets
{x1, . . . , xr}

compute y ∈ R(n+m−1)×r where each x i ∈ Rn and each f i ∈ Rm

y =
r∑

i=1
f i ∗ x i =

r∑
i=1
Dn(f i )x i

defining G =
[
Dn(f 1) · · · Dn(f r )

]
and X =

[
x1 · · · xr

]
y = G vec (X)

X can be sparse with z nonzeros and vec (X) =

x1
...

xr





Convolutional neural networks 1D convolutions

Computing many 1D convolutions with different filters
If computing y = Gw directly, we should leverage the implicit form of G
(each k × k block can be formed with O(k) entries of f )

the sparsity structure of G is easier to see by folding it into a
r × (n + m − 1)× n tensor H, then

y(j) =
r∑

i=1

n∑
k=1

H(i , j , k)X(k, i)

H(i , j , k) = 0 if k ≥ j or j ≥ k + n (each H(i , ∗, ∗) is banded Toeplitz)
a sub-band-block of entries of H of volume br × bm × bn is

represented by br bm entries of {f 1, . . . , f r}
multiplied by br bn entries of X
sums into bm + bn entries of y

fine-grained case: bm ≤ m seek br bmbn = Θ(rmn/P) to minimize
O(br bm + br bn) = O((rmn/P)(1/bn + 1/bm))

minimized by bm = bn =
√

rmn/P, possible so long as rn ≤ mP,
yielding communication complexity O(

√
rmn/P · β)



Convolutional neural networks 1D convolutions

Cost of many 1D convolutions with different filters
The overall cost of the outlined approach is (so long as rn ≤ mP)

TCNN-1D(r ,m, n,P) = O(rmn/P · γ +
√

rmn/P · β + α)

coarse-grained case: bm = m (assign each processor a subset of whole
filter vectors), seek br bn = Θ(rn/P) to minimize

W = O(br m + bn)

minimized when bn =
√

rmn/P, br =
√

rn/(Pm), again with
W = Θ(

√
rmn/P)

when X is sparse with z = frn nonzeros (f < 1) distributed randomly,
the term br bn becomes fbr bn in the fine-grained case, and we set
fbn = bm =

√
frmn/P yielding

Tsparse-CNN-1D(z ,m,P) = O(zm/P · γ +
√

zm/P · β + α)

these costs hold only in certain regimes of values r ,m, n, z ,P



Convolutional neural networks 1D convolutions

1D convolution cross product
The most general variant of CNNs uses rs filters, sq input datasets, and
produces rq output datasets

each output dataset is a sum of one of r sets of s filters applied to
one of q sets of s input datasets
this can be interpreted as a matrix multiplication with dimensions
r × s × q where each product is a convolution
if rsq ≥ p, each convolution can be performed independently
we should choose br bsbq = rsq/p to minimize

O(br bsm + bsbqn + br bqn)

taking into account initial data layout, this becomes

O((br bs − rs/P)m + (bsbq − sq/P)n + (br bq − rq/P)n)

the appropriate blocking, as well as the benefit of using FFT depends
on relative values of r , s, q,m, n,P



Convolutional neural networks 2D convolutions

2D convolutions

Given X ∈ Rn×n, F ∈ Rm×m, m ≤ n, compute Y ∈ R(n+m−1)×(n+m−1) so

∀k1, k2 ∈ [1, n + m − 1],

Y (k1, k2) =

min(m,k1)∑
j1=max(1,k1−n)

min(m,k2)∑
j2=max(1,k2−n)

F (j1, j2)X(k1 − j1 + 1, k2 − j2 + 1)

we can evaluate the 2D convolution directly via O(m2n2) operations
alternatively, we can leverage the FFT, if Dk is the DFT matrix

Dn+m−1Y Dn+m−1 =

(
Dn+m−1

[
F 0
0 0

]
Dn+m−1

)
◦
(

Dn+m−1

[
X 0
0 0

]
Dn+m−1

)
where ◦ is the Hadamard product: (A ◦ B)(i , j) = A(i , j)B(i , j)

the resulting computation cost is O(n2 log(n))



Convolutional neural networks 2D convolutions

Communication complexity of 2D convolutions
Lets compare direct 2D convolution to FFT-based convolution

we can block the 4D index space, the total size of which is
approximately n × n ×m ×m
when n < m

√
P, we should subdivide this space into 4D blocks with

equal dimensions

T2D-MM(m, n,P) = O(m2n2/P · γ +
mn√

P
· β + α)

Q: what approach should we take when n ≥ m
√

P?
A: we should replicate the filter F on all processors yielding complexity

T2D-MM(m, n,P) = O(m2n2/P · γ + m2 · β + α)

computing the 2D FFTs, when logn2/P(n) = O(1) has complexity

T2D-FFT(n,P) = O(n2 log(n)/P · γ + n2/P · β + α)

the computation complexity of the first approach can sometimes be
improved by doing FFT locally



Convolutional neural networks 2D convolutions

Many 2D convolutions
We can also consider doing r convolutions with the same filter F

in this case X and Y become order 3 tensors
performing 2D FFTs would usually yield the overall complexity

Tr2D-FFT(r , n,P) = O(rn2 log(n)/P · γ + rn2/P · β + α)

replicating the filter would be faster for sufficiently faster r ,m

Tr2D-MM(r ,m, n,P) = O(rm2n2/P · γ + m2 · β + α)

if we use 2D FFT to compute each 4D block, the cost becomes

O((n
√

r/P + m)2 log(n) · γ + m2 · β + α)

generally, we can observe that the transition from 1D to 2D
convolutions does not significantly affect the parallelization strategies
and communication cost, a 2D CNN is about as hard as a 1D CNN
with datasets of size n2 and a filter of size m2


	Convolutional neural networks
	Motivation
	1D convolutions
	2D convolutions


