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Direct network topologies Introduction

Network interconnects

For the duration of the course, we have focused on communication on
‘fully-connected’ networks, implicitly assuming that

(1) any pair of processors can exchange messages at the same speed
(2) messages between distinct pairs do not affect one another

this effect is known as network contention
we did this consciously, aiming general analysis of algorithms

there are no widely-used generic network models for algorithms
the connectivity structure of different networks can differ drastically
on real systems, algorithms execute on a subset of a network (the only
type of existing large-scale architecture on which this subset is
structured are the BlueGene and K-computer torus networks)

we will first discuss torus networks and topology-aware collectives
then we will study a few other topologies based on general metrics
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Characterization of interconnect topologies

A network topology can be characterized by
direct vs indirect: are nodes connected directly or via switches?
diameter: maximum number of hops between nodes (switches)
degree: number of links on each node/switch
link bandwidth: bandwidth per link (often non-uniform in indirect
topologies)
bisection bandwidth: minimum balanced edge cut of graph with edge
weights equal to link bandwidth
injection bandwidth: (specific to direct topologies) how many links
can a node saturate?
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Mesh and torus networks

A simple direct n-node network topology is a k-dimensional grid
a torus is distinguished from a mesh by wrap-around links
the simplest torus is a ring
tori are generally advantageous as all nodes are ‘created equal’
Q: how could a ring network be constructed so each link is the same
physical length?
when P = 2k a mesh topology is a hypercube
3D torus topologies have been popular in HPC because many
applications map nicely to them
larger k implies higher bisection bandwidth, which scales with
n(k−1)/k , so 5D torus networks have been more popular recently
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Collective communication on torus networks
As a case-study consider broadcast on a torus with full injection bandwidth

so injection bandwidth is 2k times link bandwidth
BlueGene tori have full injection bandwidth, but not Cray XT/XE
series or K computer
optimal broadcast protocols are given by edge-disjoint spanning trees

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined

n/2k data is sent along each spanning tree
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Topology-aware algorithms on torus networks

On torus networks, it is worthwhile to design algorithms that map to the
topology

if arbitrary subsets of processors communicate, there will be network
contention
the benefit of topology-aware algorithms (like the above ‘rectangular’
broadcast) is to fully avoid network contention
a simple example is matrix multiplication

on a 2D torus, SUMMA and Cannon avoid network contention
on a 3D torus, a 3D matrix multiplication algorithm is highly beneficial
on a 2kD torus, we can used a 2D algorithm like SUMMA with each
processor grid rows and columns arranged in a kD torus

another important example is iterative methods
given a 3D domain/mesh, contention between ghost zone exchange
passes can be avoided by mapping to 3D torus topology or 3D
‘unfolding’ of higher-order torus
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All-to-all on torus networks
One-to-all and all-to-one collectives like broadcast, reduce, scatter, gather
are done efficiently by rectangular algorithms like broadcast

all-to-all is noticeably more difficult
let each processor sends a total of s data, s/P to each processor
Ω(sP) data needs to cross any balanced cut, while bisection
bandwidth is P(k−1)/k with respect to link bandwidth
so Ω(sP1/k) data must cross some link
in practice, randomized algorithms are used for all-to-all
a more concrete approach is to perform all-to-all along rings in each
dimension (in sequence or a distinct subset of the all-to-all data along
disjoint dimensional orderings)
Q: how can we perform an all-to-all along a ring communicator?
A: pass data going m-hops away for m = P1/k − 1 to m = 1, total
communication cost

∑P1/k−1
i=1 2i s = O(sP1/k)
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General routing strategies
Specialized collective routines can be designed to be very efficient on tori,
but a network topology must permit any communication pattern

even a broadcast for a random subset of nodes poses a difficulty
bandwidth-efficiency is achieved for messages via wormhole routing

each message is subsdivided into packets
a message can be stalled due to head-of-line blocking

multiple packets from two input links can follow the same output link
one line of packets must wait in a buffer

deadlock can occur if route 1 goes through link a then through link b
while route 2 goes through link b then through link a
Q: can deadlock occur if no pair of routes behave like this?
A: yes, consider route 1: {a, b}, route 2: {b, c}, route 3: {c, a}
to prevent deadlock, routing protocol graph should not contain cycles

graph has edge between link a and link b if some route follows this
consecutive pair of links
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Virtual channels
Virtual channels provide flexibility to routing protocols

each physical channel (e.g. fiber in a torus) is assigned multiple
virtual channels
protocols multiplex the channels, alternating between packets from
different input virtual channels
each packet is routed based on its channel label and its destination
no deadlock can occur within a channel so long as the routing graph
contains no cycles
no deadlock can occur in the entire protocol if the channel
dependency graph has no cycles

a channel dependency graph has an edge if there is a transition from
one channel to another for any node and destination

two channels suffice for deadlock-free routing on tori
there can be trade-offs between the number of virtual channels
defined and flexibility of the routing strategy



Short pause
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Tree network topologies

Indirect topologies leverage routers that are not associated with any node
typically each node is connected to a single router
a network connects these routers, possibly using a hierarchy of routers
Ex: a butterfly network has P nodes and P(log2 P − 1) routers
tree networks are a natural hierarchical construction
Q: if the network is a binary tree with uniform link bandwidth, what is
its bisection bandwidth?
A: its bisection bandwidth is bound by the root and is equal to the
link bandwidth
fat-trees (Leiserson 1985) solve this problem by increasing link
bandwidth exponentially from leaves to root
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Fat-tree network topology

source: https://commons.wikimedia.org/wiki/File:Fat_tree_network.svg

https://commons.wikimedia.org/wiki/File:Fat_tree_network.svg
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Fat-tree bisection bandwidth
Fat-trees can be specified differently depending on the desired properties

to achieve maximal bisection bandwidth, we can increase link
bandwidth by factor of 2 from leaves to root
Q: what factor of increase do we need if we have P leaves and want
bisection bandwidth to be Pk times link bandwidth for k < 1
A: need factor of f so that f log2(P) = Pk , so f = 2k

to be able to construct a fat-tree efficiently, it makes sense to choose
k = 2/3 and f = 41/3

this choice enables the fat-tree to be embedded into 3D space
(bisection bandwidth is like 3D torus)
the construction is universal: no network can be constructed with the
same number of components that is faster by more than a
polylogarithmic factor
key idea: use decomposition tree to subdivide physical space and
simulate any communication pattern via fat-tree
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Universality of fat-trees
We sketch the analysis of Leisersion 1985 “Fat-Trees: universal networks
for hardware-efficient supercomputing”

consider routing a message set M ∈ [1,P]× [1,P] (all possible
interchanges of datums of unit size between processors)
for each link l , define

load(M, l) to be the number of messages passing through l
cap(l) to be the number of messages that can pass through l
simultaneously (effective bandwidth)
the load factor for l is

λ(M, l) =
load(M, l)

cap(l)

load factor for the whole tree λ(M) is the max λ(M, l) for any link l
given any definitions of cap(l) and it is possible to decompose any M
into M =

⋃d
i=1 Mi such that λ(Mi ) = 1 and d = O(λ(M) log(P))
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Hardware requirements of fat-trees

Leiserson consider the VLSI volume (rather than area) necessary to
implement a fat tree

in his construction, the capacity/link-bandwidth increases
exponentially from leaves to root by f = 41/3 to achieve bisection
bandwidth of P2/3 times link bandwidth
the VLSI volume necessary to construct the network architecture can
be embedded into a volume that grows as O(P log(P)3/2)

for any other network, it is assumed that O(a) information can pass
through an area of size a
the fat-tree universality theorem uses this to show that if any network
in volume v delivers any message set M in time t, a fat-tree in v can
deliver M in time O(t log(P)3)

the proof constructs a decomposition tree of the volume and
simulates the given network using a corresponding fat tree
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Low-diameter network topologies

Fat-trees are optimal within polylogarithmic factors, but hardware is
designed with consideration even for small constant factors

the current trend is towards topologies that have a low diameter
(maximum path length)
consider a definition of the diameter just in terms of the number of
routers, and assume there are O(P) base routers (connected to nodes)
the latest Cray architectures leverage the Dragonfly topology [Kim,
Dally, Scott, Abts, ISCA 2008]

define densly connected groups (cliques) of routers
connect a pair of routers between each group
resulting topology is diameter 3

one of the latest innovations is the Slim-Fly topology [Besta, Hoefler
2014], which is diameter 2 and satisfies some optimality properties
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Motivation for slim-fly

Q: what is the simplest diameter 2 topology you can think of?
define a 2D grid of nodes Π ∈ [1,

√
P]× [1,

√
P] connect each

(i , j) ∈ Π to (i , k), (k, j) ∈ Π for each k
require 2

√
P incoming and outgoing links per node

Q: how many 2-hop routes are there between each pair of nodes?
A: there are 2, which suggests that we may be able to construct a
network with fewer links
it is possible to use fewer links by relaxing the assumption that each
link is bidirectional, but this is undesirable in hardware terms
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A lower bound on degree
In general, we want to find an undirected graph which has minimal
diameter r for a given degree d

in graph theory, Hoffman and Singleton (1960) defined Moore graphs
as having a maximal number of vertices P such that

P = 1 + d
r−1∑
i=1

(d − 1)i

for r = 2 we have P ≤ 1 + d(d − 1), so d ≥
√

P
thus, for a given P, we have a lower bound
our initial construction was within a factor of two
some Moore graphs (ones that attain the bound) exist for r = 2, but
the existence of general families is an open question
McKay, Miller, and Siran 1998 provide a general construction that
comes close to the Moore bound
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Slim-fly construction

source: Besta, Hoefler 2014. Slim Fly: A Cost Effective Low-Diameter Network
a network of size 2q2 is constructed where q is (almost any) prime
there are two q × q grids A,B, each node is connected to some nodes
in its column and some nodes in the other grid
given a node (x , y) ∈ A in the first grid and (m, c) ∈ B in the second
grid, they are connected iff

mx + c − y ≡ 0 mod q

these links suffice to connect any pair of nodes in two columns of the
same grid!
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Slim-fly routing
Given (x , y) and (x ′, y ′), there must exist (m, c) such that

mx + c − y ≡ mx ′ + c − y ′ ≡ 0 mod q

to route we need to determine m, c given x , x ′, y , y ′
we can do some modular arithmetic to determine m, c

mx + c − y ≡q mx ′ + c − y ′

m(x − x ′) ≡q y − y ′

m ≡q (x − x ′)−1(y − y ′)

where we need to find the modular multiplicative inverse (this is one
of the reasons q needs to be prime)
we also need to connect (x , y) to (m, c) by finding (x ′, y) and (m′, c)
that are connected, so m′x ′ ≡q c − y , which defines how nodes
should be connected in columns
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Slim-fly degree

Each node is connected to q nodes in the other grid
this holds since given m, x , c there is a unique y such that

mx + c − y ≡ 0 mod q

within each column, the number of connections is given by half the
size of the generator set for the prime number field induced by
multiplication modulo q
the smaller the generator set the fewer connections are necessary
in any case, it suffices to connect each node to at most q/2 nodes
within its grid column
thus we have d = 3q/2 connections given 2q2 nodes, which is close
to the Moore bound (roughly) d ≥

√
2q

generalizing this construction to arbitrary diameter is an open question


	Direct network topologies
	Introduction
	Torus networks
	Network routing

	Indirect network topologies
	Fat-tree network topology
	Slim-fly network topology


