
CS 598: Communication Cost Analysis of Algorithms
Lecture 3: communication avoiding algorithms for matrix multiplication

Edgar Solomonik

University of Illinois at Urbana-Champaign

August 29, 2016

Brief Review of Communication Cost Models

Review of LogP, LogGP, and BSP

LogP model

separates network latency from sequential messaging overhead
permits overlap between communication and computation or
communication with another processor

LogGP model

additional parameter G controls large message bandwidth
eliminates packet size that was implicit in LogP

BSP model

each processor sends/receives up to h messages every superstep
cost of superstep defined based on greatest amount of computation
and communication done by any processor

LogP and BSP can simulate each other (Bilardi et al 1999)

BSP can simulate LogP with constant slowdown
LogP can simulate BSP with O(log(P)) slowdown

Matrix Multiplication Geometric Intuition

Minimizing surface to volume ratio

Matrix multiplication of n-by-n matrices A and B into C is

C (i , j) =
∑
k

A(i , k) · B(k , j)

The computation can be visualized as a 3D tensor

T (i , j , k) = (A(i , k),B(k , j),C (i , j))

Matrix Multiplication Geometric Intuition

Minimizing surface to volume ratio

Consider partitioning T into cuboids of size m as in the diagram

1D (blocking along one index): surface area is O(n2)

2D (evenly blocking along two indices): surface area is O(
√
mn)

3D (evenly blocking along all three indices): surface area is O(m2/3)

Matrix Multiplication Formalizing the Intuition

Minimizing surface to volume ratio

The surface area of a cuboid in T corresponds to the elements of A, B,
and C needed to compute all of the elements in it
Moreover, the best surface area to volume ratio of any subset of T is
achieved by selecting a cube.

Theorem (Loomis-Whitney (3D version), 1949)

Let V be a set of 3-tuples V ⊆ [1, n]3

|V | ≤
√
|π1(V)||π2(V)||π3(V)|

where

π1(V) = {(i2, i3) : ∃i1, (i1, i2, i3) ∈ V }
π2(V) = {(i1, i3) : ∃i2, (i1, i2, i3) ∈ V }
π3(V) = {(i1, i2) : ∃i3, (i1, i2, i3) ∈ V }

Matrix Multiplication Formalizing the Intuition

General Loomis-Whitney inequality

Theorem (Discrete Loomis-Whitney Inequality)

Consider any V ⊆ [1, n]d . Then we have

|V | ≤
(d∏

j=1

|πj(V)|
)1/(d−1)

,

where, for j ∈ [1, d], πj : [1, n]d → [1, n]d−1 is the projection

πj(i1, . . . , id) = (i1, . . . , ij−1, ij+1, . . . , id).

Matrix Multiplication Formalizing the Intuition

Proof of Loomis-Whitney inequality in 2 dimensions

Theorem for d = 2: |V | ≤ |π1(V)||π2(V)|

dashed lines denote projections, for any set V define W = π1(V)⊗ π2(V),
V ⊆W and |V | ≤ |W | = |π1(V)||π2(V)|.

Matrix Multiplication Formalizing the Intuition

Proof of Loomis-Whitney inequality in 3 dimensions

Theorem for d = 3: |V | ≤
√
|π1(V)||π2(V)||π3(V)|

Determine number of indices contained in V in each of three dimensions

k1 = |{i1 : (i1, i2, i3) ∈ V }|
k2 = |{i2 : (i1, i2, i3) ∈ V }|
k3 = |{i3 : (i1, i2, i3) ∈ V }|

Enumerate the hyperplanes (i1, :, :) ⊆ V adjacent to the k1 unique i1 in V ,
Vi ⊆ V for i ∈ [1, k1]

Define vectors p2(i) = |π2(Vi)| and p3(i) = |π3(Vi)|

The projections are disjoint, so |π2(V)| =
∑k1

i=1 p2(i),

|π3(V)| =
∑k1

i=1 p3(i)

By the d = 2 case, we have that |V | ≤
∑k1

i=1 p2(i)p3(i),

Matrix Multiplication Formalizing the Intuition

Proof of Loomis-Whitney inequality in 3 dimensions
We arrive at an optimization problem

max
(k1∑

i=1

p2(i)p3(i)
)
, |π2(V)| =

k1∑
i=1

p2(i), |π3(V)| =
k1∑
i=1

p3(i)

We can apply the method of Lagrange multipliers

f (~p, ~q, λ1, λ2) =
k1∑
i=1

p2(i)p3(i)+λ1

(
|π2(V)|−

k1∑
i=1

p2(i)
)

+λ2

(
|π3(V)|−

k1∑
i=1

p3(i)
)

Now we fine the critical point ∇f = 0, differntiating with respect to each variable
leads to the following constraints

∀i , p2(i) = λ2, p3(i) = λ1 and |π2(V)| =
k1∑
i=1

p2(i), |π3(V)| =
k1∑
i=1

p3(i)

So, all hyperplanes have the same dimensions: p2(i) = |π2(V)|
k1

, p3(i) = |π3(V)|
k1

Matrix Multiplication Formalizing the Intuition

Proof of Loomis-Whitney inequality for d = 3 cont’d

We have shown that if we consider the unique points in V along the first
dimension, the size of V is maximized for projections π2(V) and π3(V) of
any given size, when the hyperplanes are of equal dimensions
|π2(V)|

k1
× |π3(V)|

k1

The projection π1(V) is clearly minimized by aligning these hyperplanes

Therefore, the optimal shape of V is a k1 × k2 × k3 cuboid with faces of
size |π1(V)| = k2k3, |π2(V)| = k1k3, |π3(V)| = k1k2

Thus, |V | ≤ k1k2k3 =
√
|π1(V)||π2(V)||π3(V)|

Matrix Multiplication Applying the Intuition

Minimizing surface to volume ratio

Consider partitioning T into cuboids of size m = n3/P as in the diagram

1D (blocking along one index): surface area is O(n2)

2D (evenly blocking along two indices): surface area is O(n2/
√
P)

3D (evenly blocking along all three indices): surface area is
O(n2/P2/3)

Matrix Multiplication Applying the Intuition

Matrix multiplication

Matrix multiplication of n-by-n matrices A and B into C , C = A · B is
defined as, for all i , j ,

C (i , j) =
∑
k

A(i , k) · B(k , j)

A standard approach to parallelization of matrix multiplication is
commonly referred to as SUMMA (Agarwal et al. 1995, Van De Geijn et
al. 1997), which uses a 2D processor grid, so blocks Alm, Blm, and Clm are
owned by processor Π(l ,m)

SUMMA variant 1: iterate for k = 1 to
√
P and for all i , j ∈ [1,

√
P]

broadcast Aik to Π(i , :)
broadcast Bkj to Π(:, j)
compute Cij = Cij + Aik · Bkj with processor Π(i , j)

The ScaLAPACK library (Blackford et al 1997) uses this type of algorithms

Matrix Multiplication Applying the Intuition

SUMMA algorithm

Tα,β
SUMMA = 2

√
P · Tα,β

broadcast(n
2/P,

√
P) ≤ 2

√
P · log(P) · α +

4n2

√
P
· β

Matrix Multiplication Applying the Intuition

3D Matrix multiplication algorithm

Reference: Agarwal et al. 1995 and others

Tα,β
3D−MM = 2Tα,β

broadcast(n
2/P2/3,P1/3) + Tα,β

reduce(n2/P2/3,P1/3)

≤ 2 log(P) · α +
6n2

P2/3
· β

Matrix Multiplication Applying the Intuition

Matrix multiplication with a cyclic layout

We now consider SUMMA a cyclic distribution on a 2D processor grid, so
processor Π(l ,m) owns each A(i , j), B(i , j), and C (i , j) with i ≡ l
mod

√
P and j ≡ m mod

√
P

SUMMA variant 1: iterate for k = 1 to
√
P and for all i , j ∈ [1,

√
P]

allgather block Aik to Π(i , :)
allgather block Bkj to Π(:, j)
compute Cij = Cij + Aik · Bkj with processor Π(i , j)

The Elemental library (Poulson et all 2013) uses this layout

Matrix Multiplication Applying the Intuition

SUMMA with a cyclic layout

The advantage of a cyclic layout is due to allgather costinga factor of two
less than broadcast

new cost for 2D SUMMA

Tα,β
SUMMA−ag = 2

√
P ·Tα,β

allgather(n
2/p,
√
P) ≤

√
P · log(P) ·α+

2n2

√
P
·β

new cost for 3D algorithm

Tα,β
3D−MM−ag = 2Tα,β

allgather(n
2/P2/3,P1/3) + Tα,β

reduce(n2/P2/3,P1/3)

≤ (4/3) log(P) · α +
4n2

P2/3
· β

Matrix Multiplication Applying the Intuition

Other SUMMA variants

Instead of moving the data of A and B, we can alternatively move C

rather than have Π(i , j) compute block Cij =
∑n/

√
P

k=1 Aik · Bkj ,

have Π(i , j) compute C̄ik = Aij · Bjk for all k ∈ [1,
√
P]

then reduce(-scatter) along fibers Π(i , :) to get
∑n/

√
P

k=1 C̄ik

can similarly keep B in place and move A and C

the three SUMMA versions have the same cost for square matrices,
but different costs when matrices are rectangular (have different size)

they also work for different initial distributions of A, B, and C

Matrix Multiplication Recursive Algorithms

Recursive matrix multiplication

Now lets consider a recursive parallel algorithm for matrix multiplication[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]

C11 = A11 · B11 + A12 · B21

C21 = A21 · B11 + A22 · B21

C12 = A11 · B12 + A12 · B22

C22 = A21 · B12 + A22 · B22

This requires 8 recursive calls to matrix multiplication of n/2-by-n/2
matrices, as well as matrix additions at each level, which can be done in
linear time

Matrix Multiplication Recursive Algorithms

Recursive matrix multiplication: analysis

If we execute all 8 recursive multiplies in parallel with P/8 processors, we
obtain a cost recurrence of

Tα,β
MM(n,P) = Tα,β

MM(n/2,P/8) + O(α) + O

(
n2

P
· β
)

The bandwidth cost is dominated by the base cases, where it is
proportionate to(

n/2log8(P)
)2

= (n/P log8(2))2 = (n/P1/3)2 = n2/P2/3

for a total that we have seen before (3D algorithm)

Tα,β
MM(n,P) = O(log(P) · α) + O

(
n2

P2/3
· β
)

Matrix Multiplication Memory-Efficient Matrix Multiplication

Memory usage in 2D and 3D algorithms

In the SUMMA algorithm, each processor requires at most one block of A,
B, and C at each step, with one kept in-place, for a memory usage of

MSUMMA = 5n2/P

In the 3D algorithm, however, each processor receives two blocks of size
n2/p2/3 and computes one of the same size, so the memory usage is (to
leading order)

M3D−MM = 3n2/P2/3

Matrix Multiplication Memory-Efficient Matrix Multiplication

Cannon’s algorithm

[Cannon, 1969]

Matrix Multiplication Memory-Efficient Matrix Multiplication

Cannon’s algorithm

Advantages over SUMMA

uses only near-neighbor sends rather than multicasts

lower latency cost by factor of log(p)

can be done in-place given near-neighbor data-swaps

MCannon = 3n2/P

Disadvantages with respect to SUMMA

does not generalize well to non-square processor grids

cannot exploit topology-aware broadcasts

Matrix Multiplication Memory-Efficient Matrix Multiplication

2.5D matrix multiplication

[McColl and Tiskin 99]

O(n3/p) flops

O(n2/
√
c · p) words moved

O(
√
p/c3 log p) messages

O(c · n2/p) bytes of memory

Matrix Multiplication Memory-Efficient Matrix Multiplication

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

must satisfy 1 ≤ c ≤ p1/3

special case: c = 1 yields 2D algorithm

special case: c = p1/3 yields 3D algorithm

cost(2.5D MM(c · p, c)) = O(n3/(c · p)) flops

+ O(n2/(c · √p)) words moved

+ O(
√
p log p/c) messages

= cost(2D MM(p))/c

can achieve perfect strong scaling

Matrix Multiplication Memory-Efficient Matrix Multiplication

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

Matrix Multiplication Rectangular Matrix Multiplication

Rectangular Matrix Multiplication

[Demmel et al,
Communication-
optimal parallel
recursive rectangular
matrix multiplication,
2013]

Choosing the optimal 3D grid yields bandwidth cost

W (m, n, k , p) = O

(
min

p1p2p3=p

[
mk

p1p2
+

kn

p1p3
+

mn

p2p3

]
− mk + mn + kn

p

)

Break

Break

Administrative Interlude Homework

Homeworks

First homework assignment:

How is it going? Questions?

We’ll return to segmented scan later in the course, it can be used to
formulate many parallel sorting algorithms!

reminder: please send in pdf form to solomon2@illinois.edu, with email title

including “CS 598” by Aug 31, 9:30 AM

Administrative Interlude Homework

Advertisement and enrollment

please (re)consider enrolling, its not too late!

homework load should not be overwhelming, will be tuned accordingly

each problem is designed to help you understand an important concept
policy is flexible, exceptions will be made

project can be something you are already working on

if you complete the coursework, you can expect a good grade

if you are auditing, please complete form https://registrar.

illinois.edu/Media/Default/RGSTRNS/Auditors_Permit.pdf

please advertise the course to your colleagues, its not too late to join
the course!

https://registrar.illinois.edu/Media/Default/RGSTRNS/Auditors_Permit.pdf
https://registrar.illinois.edu/Media/Default/RGSTRNS/Auditors_Permit.pdf

Administrative Interlude Homework

Course projects

the choice of project will be flexible

doing something in your current research area is encouraged

setting up a meeting with me prior to first proposal is recommended

especially if you are not sure what you want to do
can give you feedback on your ideas (gauge difficulty) or suggest others

	Brief Review of Communication Cost Models
	Matrix Multiplication
	Geometric Intuition
	Formalizing the Intuition
	Applying the Intuition
	Recursive Algorithms
	Memory-Efficient Matrix Multiplication
	Rectangular Matrix Multiplication

	Break
	Administrative Interlude
	Homework

