
CS 598: Communication Cost Analysis of Algorithms
Lecture 5: memory- and communication-efficient LU factorization

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 7, 2016



Homework 1 and 2

Segmented scan

Given a n × P matrix A, compute n × P matrix B = S(A), where

B(i , j) =

j∑
k=1

A(i , k)

Aodd = [A(:, 1),A(:, 3), . . .A(:,P − 1)],

Aeven = [A(:, 2),A(:, 4), . . .A(:,P)].

Now, observe that Beven = S(Aodd + Aeven) and that Bodd = Beven − Aeven.

The above version is a ‘postfix’ sum, a ‘prefix’ sum B = R(A) is more standard

B(i , j) =

j−1∑
k=1

A(i , k)

Now, Beven = R(Aodd + Aeven) and Bodd = Beven + Aeven. Neither version requires
an additive inverse. A scan is a prefix sum with an arbitrary + operator.



Homework 1 and 2

Parallel segmented scan

The parallel prefix sum is the first parallel algorithm many people learn

Tscan(P) = Tscan(P/2) + 2 = 2 log2(P)

for T ∈ {computation, communication, synchronization}.
So we can trivially get

Tseg-scan(n,P) = Tseg-scan(n,P/2) + 2 · α + 2n · β = 2 log2(P) · α + 2n log2(P) · β

MPI::Scan does the trivial algorithm :(

Note 1: the n scans are independent
Note 2: parallel scan discards half the processors at each step

Butterfly Idea: assign n/2 of the scans to the other half of the processors

Tseg-scan(n,P) = Tseg-scan(n/2,P/2) + 2 · α + (n/2) · β = 2 log2(P) · α + n · β

BSP Idea: transpose A and have each processor compute n/P scans sequentially



Homework 1 and 2

Senders vs receivers in a wrapped butterfly

We proved in lecture that the senders in the wrapped butterfly (Träff and
Ripke) algorithm are independent

I thought the showing this for receivers would require some work

some students were more clever than me...

the set of receivers at the next level is the set of senders in the
previous with a flipped bit

if x 6= y , flipping the same bit preserves the inequality

if we flip a bit that is different in x and y , the bits remain different

HW 1 take-away: simplicity is attained by finding the right perspective



Homework 1 and 2

Homework 2

problem 1 is Strassen’s algorithm

recursion dragon is back
algorithms are given, your task: analysis
should be analogous to recursive MM and LU

problem 2 is radix sort

algorithm given, last part requires minor modification
your primary task is again cost analysis
uses HW 1 problem 1!

if you did not complete HW 1, remember the lowest homework grade
is disregarded, but not the second lowest...



LU factorization review

Recursive LU factorization: analysis
LU requires two recursive calls and O(1) matrix multiplications

TLU(n,P) = 2TLU(n/2,P) + O
(

log(P) · α +
n2

P2/3
· β
)

the bandwidth cost decreases geometrically (by a factor of 2) at each level.
If we allgather the matrix at the base cases, each has a cost of

TLU(n0,P) = O(log(P) · α + n2
0 · β)

Q: What choice of n0 makes the base cases have bandwidth cost less than n2

P2/3 ?

Tbc(n, n0,P) =
n

n0
TLU(n0,P)

A: we would want select is n0 = n/P2/3, giving a total cost of

TLU(n,P) = O(P2/3 · log(P) · α +
n2

P2/3
· β
)

In the BSP model, we lose the log(P) factors in synchronization cost.



LU factorization review

Recursive triangular inversion: analysis

The two recursive calls within triangular inversion are independent, so we can
perform them simultaneously with half of the processors

TTri-Inv(n,P) = TTri-Inv(n/2,P/2) + O(TMM(n,P))

= TTri-Inv(n/2,P/2) + O
(

log(P) · α +
n2

P2/3
· β
)

with base-case cost (sequential execution)

TTri-Inv(n0,P) = O(log(P) · α + n2
0 · β)

the bandwidth cost goes down at each level and we can execute the base-case
sequentially when n0 = n/P1/3, with a total cost of

TTri-Inv(n,P) = O
(

log(P)2 · α +
n2

P2/3
· β
)

So triangular inversion has logarithmic depth while LU has polynomial depth, but
using inversion within LU naively would raise the LU latency by another log factor



LU factorization review Recursive algorithm

Memory-efficient recursive LU factorization

In the analysis of recursive LU, we assumed

TMM(n,P) = O
(

log(P) · α + n2/P2/3 · β
)

which requires n2/P2/3 memory, P1/3 more than minimal

What if we have only cn2/P memory for some c ∈ [1,P1/3]?

TMM(n,P, c) = O
(√

P/c3 log(P) · α + n2/
√

cP · β
)

Q: Does the additional MM latency cost raise the LU latency cost?
A/Q: Naively yes, but could we do something about it?
A: Yes, we could increase c for small subproblems.
What should we set the base case dimension to (previously n0 = n/P2/3)?

Tbc(n, n0) = O
(

(n/n0)(log(P) · α + n2
0 · β)

)
Tbc

(
n,

n√
cP

)
= O

(√
cP
(

log(P) ·α+
n2

cP
·β
))

= O
(√

cP log(P) ·α+
n2

√
cP
·β
)



Administrative interlude

Short pause



Administrative interlude

Course projects and homework

Course projects

the choice of project will be flexible

doing something in your current research area is encouraged

first proposal deadline pushed back a week to Sep 28

I am happy to give feedback or ideas over email or in person

Homework 2

is due Sep 21

post questions on Piazza or come to office hours!



Memory-efficient LU factorization 2.5D LU

2.5D LU factorization



Memory-efficient LU factorization 2.5D LU

2.5D LU factorization



Memory-efficient LU factorization 2.5D LU

2.5D LU factorization


	Homework 1 and 2
	LU factorization review
	Recursive algorithm

	Administrative interlude
	Memory-efficient LU factorization
	2.5D LU


