CS 598: Communication Cost Analysis of Algorithms
Lecture 6: LU factorization with pivoting and intro to parallel QR

Edgar Solomonik
University of lllinois at Urbana-Champaign

September 12, 2016

Partial pivoting

When computing each U(i, i) partial pivoting selects the row with the
largest leading element and rotates it to the top

@ achieves stability in practice

@ pivot growth bounds are still exponential O(2") and numerical
examples can attain them, in particular the Wilkinson matrix

@ complete pivoting guarantees stability but is even more expensive

@ partial pivoting requires message/synchronization for each column
when the matrix is blocked in both dimensions

Partial pivoting

Lets consider the cost of partial pivoting on a m X n matrix A, in a 1D
layout (M(7) owns A(im/P+1:(i+1)m/P,:))
@ selecting each pivot required an (all)reduce of size O(1)

@ the cost of pivoting is therefore at least

0] (n log(P) - a)

@ the synchronization cost of nlog(P) - « is problematic, especially
within 2D LU

LU with pivoting Pivoting schemes

Parallel pivoting

Parallel pivoting is a naive way to exploit more parallelism within pivoting
@ perform pivoted LU on each pair of rows and recurse with n/2 rows
@ worst-case pivot growth bound O(2"), same as partial pivoting
@ exponential pivot growth in the average case

@ unstable in practice

LU with pivoting Pivoting schemes

Pairwise pivoting

One alternative technique to partial pivoting is pairwise pivoting

@ it looks like Givens rotations in QR, so we will return to it in more
detail then

@ basic idea is to perform 2-by-2 LU factorizations with partial pivoting,
to ‘zero-out’ one matrix entry at a time

@ this strategy is more ‘local’ than partial pivoting

o theoretical pivot growth bound is O(4"), worse than partial pivoting
by factor of 2"

o average case growth (empirical) is O(n) rather than O(n?/3) for
partial pivoting
@ in practical tests, somewhat more numerical error is indeed observed

@ see Sorensen 1985 for details on stability

LU with pivoting Pivoting schemes

Tournament pivoting

Tournament pivoting is a stable approach for ‘block-pivoting’
@ performs a tournament to determine best pivot row candidates
@ rotates up 'best rows' of A

@ does not perform LU while doing pivoting, so is different from naive
version of blocked pairwise pivoting

LU with pivoting Pivoting schemes

Tournament pivoting

Consider m x n matrix A (seeking the leading n rows)
@ partition A = [21} into two m/2 x n blocks
2

@ recursively find best n candidate rows R; from A; and R, from As

@ do LU with partial pivoting sequentially on PLU = [gl]
2

@ return best b rows of A as top n rows of PT [gl]
2

@ Q: why might this be more stable than parallel pivoting?

@ A: we pass up rows of A, so error of intermediate factorizations is not
blown up

@ best known worst-case error bound, O(2"'°8(P)) but observed to be
more stable than pairwise pivoting empirically

LU with pivoting Pivoting schemes

Cost analysis of tournament pivoting

Consider tournament pivoting on a m x n matrix with m > nP. If v is the
cost of a floating point operation, then

Ttp(m, n, P) = Ttp(m/2,n,P/2) + O(ac + n*- B+ n® - 7)
TTp(mo, n, 1) = O(mon2 . ’}/)
= O(log(P) - a + n? log(P) - B + (n3 log(P) + mn2/P))

2.5D LU with tournament pivoting

PAs | PAz | PAI | PA0

LU with pivoting 2.5D LU with pivoting

2.5D LU factorization with tournament pivoting

T
M
|
M

i

jmamEm amn|
EEmE
mEm |
mEmEm

N . |
(N |
(|

N |
T

o)
=
=
<)
=
o
4=
=
2
o}
=
[a)]
)
o

0
15
5
o
2
5 S mEmmm
< [[T
= AREES e
2 HH T
T PO
> EEE! FEEHH
> HHH s ssssast
mumus SEEE! e
EEEEEam=c. HWHHHHD |
==cadiaas o]
Sea=, mem

o

2.5D LU factorization with tournament pivoting

0

c

4+

(@)

2
= I]
° 4+ A Hu i 20
Z - A L2 e
=) pasEsisas BeE
> S s e
= @ T e

n AN RN
m p - T 5 7

=) T Pt
q 2
H c
o + — M
< by . EE
q = e it
- m b HWH HH-??E

At Eeaaaee= Eaa et

et e sl

- : =L s

(o) s =

4

O

0

o

—

[

Lo

qV

Summary of 2.5D LU

A slightly modified summary of 2.5D LU:

@ 2D LU on rectangular panels of dimensions at most n x n/c with a
V' Pc x \/P/c grid of processors

@ a transposition of the computed panel of L on the processor grid, so
each processor owns blocks of dimension n/v' Pc3 x n/+\/P/c

@ the dual operation to compute a panel of U
@ broadcasts of L and U panels to aggregate Schur complement

@ scatter-reduce of aggregates to obtain the next panel of Schur
complement

LU with pivoting 2.5D LU with pivoting

2D rectangular LU with tournament pivoting

The n x n/c panel factorizations are done with v/ Pc x y/P/c processors
@ tournament pivoting on each subpanel of dims (at most) n x b is

n 2
Tre(n, b, VPC) = O(|og(/:>).a_|_b2 log(P)-8+ (b3 |og(P)+\/[;7C).’Y)

computing subpanel of U of dims b x n/c is less expensive
@ the Schur complement broadcast has cost

n’b
TSchur-2D(”7 b7 P7 C) (lOg(P) o+ \/i P 7)

Q: what maximal choice of b gives T1p < Tschur-2D?
A: b= \/PTI)’ for a total cost of (over all ¢ panels)

n - (nlog(P) n? n3
ETSChur—2D(n7b7’D7C)_O< b O[—i_\/ipfcﬁ_’_?’Y)

the synchronization cost becomes O(v/ Pclog(P) - «)

LU with pivoting 2.5D LU with pivoting

Communication in 2.5D LU with tournament pivoting

@ 2D LU on rectangular panels v': O(+vPclog(P)-a + n -B
VPe

@ a transposition of the computed panel of L on the processor grid, so each
processor owns blocks of dimension n/+/P/c x n/v/ Pc

O(c log(P) - a + n?log(P)/P - /5)

@ the dual operation to compute a panel of U (less than above)

@ broadcasts of L and U panels to aggregate Schur complement
o each panel block needs to be multiplied by 1/P/c other blocks,

naturally expressed by a 1/P/c X \/P/c x ¢ processor grid
e so each processor obtains y/P/c blocks of dims n/v'Pc3 x n/+/P/c
2

O(clog(P)-a+ \/n? ~6)

@ scatter-reduce of aggregates (each processor owns n/y/P/c x n/+/Pc block)
to obtain the next panel of Schur complement

O(clog(P)-a+ C—;f ~6)

Short pause

QR factorization

QR factorization A = QR where A is orthogonal and R is upper-triangular
is a robust method with applications including linear systems Ax = b

@ given a pivoted LU factorization A = PLU, we can compute
x=UL"1PTh

given a QR factorization A = QR, we can compute x = R~1Q7b
for overdetermined systems (tall and skinny A),

% = R QT b minimizes ||A% — b||

QR factorization is unconditionally stable for ||A — QR||2 (LU is only
with complete pivoting), but not necessarily row-wise stable
e applying orthogonal transformations is numerically stable, cond(Q) =1

QR is used to compute eigenvalue and singular value decompositions,
as well as within iterative methods

QR with column-pivoting is “rank-revealing”, its cost is proportional
to the rank of A

Householder QR

Householder QR is a stable approach to computing the factorization

@ Gram-Schmidt is not stable for A — QR, Modified Gram-Schmidt is
not stable for | — QT Q, Givens rotations we will come back to later

@ A Householder rotation is a symmetric orthogonal matrix
P=1—-2uu"

u is picked to annihilate n — 1 entries in A and to have ||u|]o =1

Householder QR is stable, because multiplying by P corresponds to
multiplying by an orthogonal matrix

if we compute Q; for the ith column of A (after updating), we obtain

n—1
[[ea=a
i=1

Introduction to parallel QR

Aggregated Householder QR

We can aggregated k Householder transformations of dimensions n as
Q=1-YTYT
@ where Y is n X k, lower trapezoidal, unit-diagonal, all entries <1
e T is upper triangular and satisfies T"' + T-7T = —-YTYy
@ its easy to check that this is true for n =1, T = [2],
T1=TT=1/2and YTY =uTu=|[ul[3=1
egiven @1 =1-Y1 TlYlT and @ =1—-Y5T, T2T,

QQ=1—-YTY'

where

Y1
_ and T4 7 T7T=Y"Y
Y2

	LU with pivoting
	Pivoting schemes
	2.5D LU with pivoting

	Administrative interlude
	Introduction to parallel QR

