
CS 598: Communication Cost Analysis of Algorithms
Lecture 6: LU factorization with pivoting and intro to parallel QR

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 12, 2016

LU with pivoting Pivoting schemes

Partial pivoting

When computing each U(i , i) partial pivoting selects the row with the
largest leading element and rotates it to the top

achieves stability in practice

pivot growth bounds are still exponential O(2n) and numerical
examples can attain them, in particular the Wilkinson matrix

complete pivoting guarantees stability but is even more expensive

partial pivoting requires message/synchronization for each column
when the matrix is blocked in both dimensions

LU with pivoting Pivoting schemes

Partial pivoting

Lets consider the cost of partial pivoting on a m × n matrix A, in a 1D
layout (Π(i) owns A(im/P + 1 : (i + 1)m/P, :))

selecting each pivot required an (all)reduce of size O(1)

the cost of pivoting is therefore at least

O
(
n log(P) · α

)
the synchronization cost of n log(P) · α is problematic, especially
within 2D LU

LU with pivoting Pivoting schemes

Parallel pivoting

Parallel pivoting is a naive way to exploit more parallelism within pivoting

perform pivoted LU on each pair of rows and recurse with n/2 rows

worst-case pivot growth bound O(2n), same as partial pivoting

exponential pivot growth in the average case

unstable in practice

LU with pivoting Pivoting schemes

Pairwise pivoting

One alternative technique to partial pivoting is pairwise pivoting

it looks like Givens rotations in QR, so we will return to it in more
detail then

basic idea is to perform 2-by-2 LU factorizations with partial pivoting,
to ‘zero-out’ one matrix entry at a time

this strategy is more ‘local’ than partial pivoting

theoretical pivot growth bound is O(4n), worse than partial pivoting
by factor of 2n

average case growth (empirical) is O(n) rather than O(n2/3) for
partial pivoting

in practical tests, somewhat more numerical error is indeed observed

see Sorensen 1985 for details on stability

LU with pivoting Pivoting schemes

Tournament pivoting

Tournament pivoting is a stable approach for ‘block-pivoting’

performs a tournament to determine best pivot row candidates

rotates up ’best rows’ of A

does not perform LU while doing pivoting, so is different from naive
version of blocked pairwise pivoting

LU with pivoting Pivoting schemes

Tournament pivoting

Consider m × n matrix A (seeking the leading n rows)

partition A =

[
A1

A2

]
into two m/2× n blocks

recursively find best n candidate rows R1 from A1 and R2 from A2

do LU with partial pivoting sequentially on PLU =

[
R1

R2

]
return best b rows of A as top n rows of PT

[
R1

R2

]
Q: why might this be more stable than parallel pivoting?

A: we pass up rows of A, so error of intermediate factorizations is not
blown up

best known worst-case error bound, O(2n log(P)), but observed to be
more stable than pairwise pivoting empirically

LU with pivoting Pivoting schemes

Cost analysis of tournament pivoting

Consider tournament pivoting on a m × n matrix with m ≥ nP. If γ is the
cost of a floating point operation, then

TTP(m, n,P) = TTP(m/2, n,P/2) + O(α + n2 · β + n3 · γ)

TTP(m0, n, 1) = O(m0n
2 · γ)

= O(log(P) · α + n2 log(P) · β + (n3 log(P) + mn2/P) · γ)

LU with pivoting 2.5D LU with pivoting

2.5D LU with tournament pivoting

PA₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

PA₀

LU with pivoting 2.5D LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

PA₀

LU with pivoting 2.5D LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

PA₀

LU with pivoting 2.5D LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

L₃₀

L₁₀
L₂₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

PA₀

LU with pivoting 2.5D LU with pivoting

Summary of 2.5D LU

A slightly modified summary of 2.5D LU:

2D LU on rectangular panels of dimensions at most n × n/c with a√
Pc ×

√
P/c grid of processors

a transposition of the computed panel of L on the processor grid, so
each processor owns blocks of dimension n/

√
Pc3 × n/

√
P/c

the dual operation to compute a panel of U

broadcasts of L and U panels to aggregate Schur complement

scatter-reduce of aggregates to obtain the next panel of Schur
complement

LU with pivoting 2.5D LU with pivoting

2D rectangular LU with tournament pivoting

The n × n/c panel factorizations are done with
√
Pc ×

√
P/c processors

tournament pivoting on each subpanel of dims (at most) n × b is

TTP(n, b,
√
Pc) = O

(
log(P)·α+b2 log(P)·β+

(
b3 log(P)+

nb2√
Pc

)
·γ
)

computing subpanel of U of dims b × n/c is less expensive

the Schur complement broadcast has cost

TSchur-2D(n, b,P, c) = O(log(P) · α +
nb√
Pc
· β +

n2b

cP
· γ)

Q: what maximal choice of b gives TTP ≤ TSchur-2D?

A: b = n√
Pc log(P)

, for a total cost of (over all c panels)

n

b
TSchur-2D(n, b,P, c) = O

(n log(P)

b
· α +

n2√
Pc
· β +

n3

cP
· γ
)

the synchronization cost becomes O(
√
Pc log(P) · α)

LU with pivoting 2.5D LU with pivoting

Communication in 2.5D LU with tournament pivoting

2D LU on rectangular panels X: O
(√

Pc log(P) · α + n2√
Pc
· β
)

a transposition of the computed panel of L on the processor grid, so each
processor owns blocks of dimension n/

√
P/c × n/

√
Pc

O
(
c log(P) · α + n2 log(P)/P · β

)
the dual operation to compute a panel of U (less than above)

broadcasts of L and U panels to aggregate Schur complement

each panel block needs to be multiplied by
√
P/c other blocks,

naturally expressed by a
√
P/c ×

√
P/c × c processor grid

so each processor obtains
√
P/c blocks of dims n/

√
Pc3 × n/

√
P/c

O
(
c log(P) · α +

n2√
Pc
· β
)

scatter-reduce of aggregates (each processor owns n/
√
P/c × n/

√
Pc block)

to obtain the next panel of Schur complement

O
(
c log(P) · α +

cn2

P
· β
)

Administrative interlude

Short pause

Introduction to parallel QR

QR factorization

QR factorization A = QR where A is orthogonal and R is upper-triangular
is a robust method with applications including linear systems Ax = b

given a pivoted LU factorization A = PLU, we can compute
x = U−1L−1PTb

given a QR factorization A = QR, we can compute x = R−1QTb

for overdetermined systems (tall and skinny A),

x̂ = R+QTb minimizes ||Ax̂ − b||2

QR factorization is unconditionally stable for ||A− QR||2 (LU is only
with complete pivoting), but not necessarily row-wise stable

applying orthogonal transformations is numerically stable, cond(Q) = 1

QR is used to compute eigenvalue and singular value decompositions,
as well as within iterative methods

QR with column-pivoting is “rank-revealing”, its cost is proportional
to the rank of A

Introduction to parallel QR

Householder QR

Householder QR is a stable approach to computing the factorization

Gram-Schmidt is not stable for A− QR, Modified Gram-Schmidt is
not stable for I − QTQ, Givens rotations we will come back to later

A Householder rotation is a symmetric orthogonal matrix
P = I − 2uuT

u is picked to annihilate n − 1 entries in A and to have ||u||2 = 1

Householder QR is stable, because multiplying by P corresponds to
multiplying by an orthogonal matrix

if we compute Qi for the ith column of A (after updating), we obtain

n−1∏
i=1

Qi = Q

Introduction to parallel QR

Aggregated Householder QR

We can aggregated k Householder transformations of dimensions n as
Q = I − YTY T

where Y is n × k , lower trapezoidal, unit-diagonal, all entries ≤ 1

T is upper triangular and satisfies T−1 + T−T = −Y TY

its easy to check that this is true for n = 1, T = [2],
T−1 = T−T = 1/2 and Y TY = uTu = ||u||22 = 1

given Q1 = I − Y1T1Y
T
1 and Q2 = I − Y2T2T

T
2 ,

Q1Q2 = I − YTY T

where

Y =

[
Y1 0
... Y2

]
and T−1 + T−T = Y TY

	LU with pivoting
	Pivoting schemes
	2.5D LU with pivoting

	Administrative interlude
	Introduction to parallel QR

