
CS 598: Communication Cost Analysis of Algorithms
Lecture 7: parallel algorithms for QR factorization

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 14, 2016

Parallel Householder QR Householder vector aggregation

Review of Householder QR

Represent orthogonal matrix as Q = I − YTY T

Y is tall-and-skinny, lower trapezoidal

T is upper triangular and satisfies T−1 + T−T = −Y TY

therefore, given Y , we can compute T

we can combine Householder transformations

Q1 = I − Y1T1Y
T
1

Q2 = I − Y2T2T
T
2

Q1Q2 = I − YTY T

Y =

[
Y1 0
... Y2

]
T−1 + T−T = −Y TY

Parallel Householder QR 1D algorithm

1D Householder QR
Lets start with a simple parallel QR algorithm

assign processor Π(i) columns Ai = A(:, in/P + 1 : (i + 1)n/P)

factorize A0 using Π(0)

get Householder vector y1, apply (I − 2y1y
T
1)A0, move to next column

collect these vectors into trapezoidal matrix Y0 = [y1, . . . , yn/P]

compute S0 = Y T
0 Y0, extract lower-triangular part of S0 and invert it

to get T0

so we obtain Y0 and T0 such that (I − Y0T0Y
T
0)TA0 = R0

broadcast Y0, T0 to Π(1 : P − 1)

compute (I − Y0T0Y
T
0)TAi with Π(i) for i ∈ [1,P − 1]

Q: how many operations does the above update require on each processor,
O(n3/P) or O(n3/P2)? Recall, Y0 is n × n/P.

A: the latter, via Ai − (Y0(TT
0 (Y T

0 Ai)))

continue with Π(1) on lower n − n/P rows of A1, etc.

Q: what is the communication cost of this algorithm?

A: O(P · log(P) · α + n2 · β)

Parallel Householder QR 2D algorithm

2D Householder QR

column Π(:, i) owns columns Ai = A(:, in/P + 1 : (i + 1)n/P)

factorize A0 using Π(:, 0)
1-element reduction/broadcast to compute each Householder vector
applying (I − 2y1y

T
1)A0 needs allreduce of size up to n/

√
P for yT

1 A0

computing T0 has cost O(β · n2/P)

broadcast T0 everywhere (Π(:, :))

send Y0 blocks so they are distributed along Π(:, 0) and Π(0, :)

broadcast Y0 along processor grid columns and rows so its distributed
on each Π(:, i) and each Π(i , :)

compute (I − Y0T0Y
T
0)TAi with Π(i) for i ∈ [1,P − 1]

Q: what communication do we need for W0 = Y T
0 Ai?

A: a reduce or scatter-reduce along processor grid rows

then transpose and broadcast W0 so that each processor to compute
Y0T

T
0 Y T

0 Ai

Parallel Householder QR 2D algorithm

2D Householder QR, transpose and broadcast Y

Parallel Householder QR 2D algorithm

2D householder QR, reduce W = Y TA

Parallel Householder QR 2D algorithm

2D householder QR, transpose W and compute TTW

Parallel Householder QR 2D algorithm

2D householder QR, compute YTTY TA and subsequently
QTA = A− YTTY TA

Parallel Householder QR 2D algorithm

2D Householder QR analysis

Q: What is the bandwidth cost of the 2D Householder QR algorithm?

Hint: we have
√
P steps where we work with n × n/

√
P panels

distributed over
√
P processors

A: O(n2√
P
· β), O(

√
P) collectives with n/

√
P × n/

√
P blocks

Q And what is the synchronization cost?

Hint: is it dominated by communicating panels or computing
Householder vectors?

A: O(n log(P) · α)

Recall that the 1D cost was O(P · log(P) · α + n2 · β), the 2D
algorithm has a lesser bandwidth cost, but a higher latency cost

Parallel Householder QR 2.5D algorithm

2.5D Householder QR

2D Householder QR looks similar to 2D LU, so we can hope to do 2.5D
Householder QR

we’ll come back to synchronization cost, first lets try to get
O(n2/

√
cp) bandwidth

we can adapt the same idea of factorizing panels of sizes n × n/c
using a

√
cP ×

√
P/c processor grid

however, how do we aggregate Householder updated like Schur
complement updates?

to get Y T
0 · (TT

0 Y T
0 A), we first need to fully compute Y T

0 A

moreover, we need the fully updated (I − Y0T
T
0 Y T

0)TA to compute
the next update by Y T

1

solution: delay the trailing matrix update and aggregate Y further

terminology: left-looking algorithms (as opposed to right looking),
also possible in 2D and for LU

Parallel Householder QR 2.5D algorithm

2.5D Householder QR

Parallel Householder QR 2.5D algorithm

A problem with some 2.5D/3D algorithms

The outlined scheme achieves O(n2/
√
cp) communication like 2.5D LU

however, it has an overhead due to a type of communication we have
for now ignored...

we are trying to multiply a large replicated Y matrix by skinny panels

2D algorithms multiply relatively square matrices

if the large matrices do not fit into cache, memory bandwidth can
become a bottleneck

2.5D matrix multiplication did not have this problem, neither did the
recursive LU algorithm

2.5D LU as described had this problem, but it can be addressed by
delaying computation of the Schur complement update aggregates

next, we will study a 2.5D QR algorithm that uses recursion to avoid
memory-bandwidth overheads

Administrative interlude

Short pause

Parallel Givens QR Givens rotations

Pairwise rotations
Givens rotations provide an alternative to Householder transformations

a Givens rotation is given by a 2× 2 matrix Q =

[
c s
−s c

]
, with c , s chosen

so that QQT = I and for a given vector a, QT

[
a1
a2

]
=

[
α
0

]
to obtain c and s, we can note that the desired elimination yields the

condition

[
−a1 a2
a2 a1

] [
c
s

]
=

[
α
0

]
LU combined with the orthogonalization condition provides a closed-form
solution: c = a1/

√
a21 + a22, s = −a2/

√
a21 + a22

Givens rotations have the ability to preserve sparsity and can be more
parallelizable

LU with pairwise pivoting is similar, it generates matrix

L−1 =

[
1 0

−a2/a1 1

]
, so that L−1a = [β 0]T

both of these rotation matrices can be embedded into larger matrices to act
on neighboring elements of a column as well as ones separated by any
number of rows

Parallel Givens QR Givens rotations

Pairwise rotations

Pairwise rotations may be blocked in a few convenient ways

for n × n matrix A, we can compute A = TR with upper-triangular R
and T orthogonal or lower triangular, by either n(n − 1)/2 rotations
or a standard method, e.g. Householder

for 2n × n matrix

[
R1

R2

]
, we can compute A = T

[
R
0

]
where T can be

represented with n(n + 1)/2 rotations
these two steps suggest a recursive scheme for QR or LU with
pairwise pivoting (due to Frens and Wise 2003)[

A11 A12

A21 A22

]
→
[
U11 A12

U21 A22

]
→
[
R11 A12

0 A22

]
first factorize the right n × n/2 submatrix via two recursive QR calls,
then update the right half and compute the QR of the lower right
submatrix

→
[
R11 R21

0 B22

]
→
[
R11 R21

0 R22

]

Parallel Givens QR Naive parallel recursive QR

Frens and Wise recursive QR

requires four recursive calls to QR
Q: which of these calls can be done concurrently?
A: only the first two, three of them must be done in sequence
therefore, the parallel cost is at least

TFW(n,P) = 3TFW(n/2,P) + O(TMM(n/2,P))

the cost O(β · n2/
√
cP) decreases with each level by factor of 4/3

after k recursive levels the base cases have a bandwidth cost of

TFW(n,P, k) ≥ 3k · (n/2k)2 · β = (3/4)kn2 · β
to get TFW(n,P, k) ≤ n2/

√
cP, we need k = log4/3(

√
cP)

the number of these base cases, and subsequently the synchronization

cost is 2log4/3(
√
cP) =

√
cP

log4/3(2) ≈ (cP)1.2

ugly, but technically still better than O(n · α)

Parallel Givens QR Naive parallel recursive QR

Can we do more block QR factorizations concurrently?

yes, if we consider smaller blocks

the wavefront of available concurrent work is slanted with a 2:1 ratio

Parallel Givens QR Slanted panel recursive QR

Tiskin’s QR algorithm

Lets work with the 2:1 ratio directly by considering slanted panels!
[Tiskin 2007]

Embed the original matrix into a matrix with a slanted panel and perform
QR on the slanted panel.
Represents problem so that the full wavefront (pipeline) is active.

Parallel Givens QR Slanted panel recursive QR

A generalized subproblem

Parallel Givens QR Slanted panel recursive QR

Slanted panel recursion

Parallel Givens QR Slanted panel recursive QR

Slanted panel recursion, different view

Parallel Givens QR Slanted panel recursive QR

Slanted panel base case

Parallel Givens QR Slanted panel recursive QR

Details on Tiskin’s QR algorithm

The subproblem is a slanted panel with row dimension n and width m

the algorithm has two recursive calls with subpanels of half the width
(one has a few less rows)

the orthogonal transformation formed at each recursive step has the
same structure as the eliminated subpanel

therefore T is a matrix of dimension n with bandwidth m/2

to get the next T we need to multiply the T s obtained from
subproblems

we also need to update the trailing subpanel

these correspond to multiplications of banded matrices, a slanted
n ×m ×m/2 cuboid

its possible to subdivide these multiplications into P blocks with area
O((nm2/P)2/3)

Parallel Givens QR Slanted panel recursive QR

Cost analysis on Tiskin’s QR algorithm

Two recursive calls and a matrix multiplication every step

the base cases can be done in just two stages with O(1) syncs.

this is where keeping the slanted panel structure pays off, obtaining a
QR factorization of a rectangular matrix with the same number of
elements as slanted panel is more expensive

overall we get the recursion with BSP cost

T (n,m,P) = 2T (n,m/2,P) + O(α + (nm2/P)2/3 · β)

bandwidth cost decreases by a factor of 22/3 at each recursive level

the base-cases have cost T (n,m0,P0) = O(α + nm0/P0 · β), so long
as m0 ≤ n/P0

we can select m0 = n/P2/3 and P0 = P2/3 to obtain the total cost

TQR = O(P2/3 · α + n2/P2/3 · β)

by doing the multiplications differently and having a larger base case
we can get from P2/3 to

√
cP in both terms

	Parallel Householder QR
	Householder vector aggregation
	1D algorithm
	2D algorithm
	2.5D algorithm

	Administrative interlude
	Parallel Givens QR
	Givens rotations
	Naive parallel recursive QR
	Slanted panel recursive QR

