CS 598: Communication Cost Analysis of Algorithms
Lecture 7: parallel algorithms for QR factorization

Edgar Solomonik
University of lllinois at Urbana-Champaign

September 14, 2016

Review of Householder QR

Represent orthogonal matrix as Q =/ — YTYT
@ Y is tall-and-skinny, lower trapezoidal
o T is upper triangular and satisfies T"1 + T- 7T = —-YTYy
o therefore, given Y, we can compute T

@ we can combine Householder transformations

Qu=1I1-Y1T1Yy

Q=1-Y2T,T)
Q@ =1-YTYT
Y. O
LY,
Tl4T7 T =—YTY

1D Householder QR

Lets start with a simple parallel QR algorithm
@ assign processor (i) columns A; = A(:,in/P +1: (i +1)n/P)
@ factorize Ay using [1(0)
o get Householder vector y;, apply (I — 2y1y;)Ag, move to next column

o collect these vectors into trapezoidal matrix Yo = [y1,..., ya/p]
o compute So = Y Yo, extract lower-triangular part of Sy and invert it
to get Ty

e so we obtain Yy and Tg such that (I — Yo ToYy)T Ao = Ro
broadcast Yy, Toto M(1: P —1)
compute (I — Yo ToY,)T A; with N(i) for i € [1, P — 1]

Q: how many operations does the above update require on each processor,
O(n3/P) or O(n®/P?)? Recall, Yy is n x n/P.

A: the latter, via A; — (Yo(T4 (Y A))))

continue with (1) on lower n — n/P rows of Ay, etc.

Q: what is the communication cost of this algorithm?
A: O(P -log(P) - a+ n?- 3)

2D Householder QR

@ column M(:, /) owns columns A; = A(:,in/P+1:(i+1)n/P)

e factorize Ag using I1(:,0)
o l-element reduction/broadcast to compute each Householder vector
o applying (I — 2y1y;)Ao needs allreduce of size up to n/v/P for y] Ay
e computing Ty has cost O(3 - n?/P)

@ broadcast Ty everywhere (M1(:,:))

@ send Yp blocks so they are distributed along I1(:,0) and (0, :)
broadcast Yj along processor grid columns and rows so its distributed
on each T(:,7) and each M(i,:)

compute (I — YoToYy)T A; with M(i) for i € [1, P — 1]

Q: what communication do we need for Wy = YOTA,-?

A: a reduce or scatter-reduce along processor grid rows

then transpose and broadcast W, so that each processor to compute

2D Householder QR, transpose and broadcast Y

Parallel Householder QR 2D algorithm

2D householder QR, reduce W = YTA

W=YTA

Allreduce

Parallel Householder QR 2D algorithm

2D householder QR, transpose W and compute T™W

TW=TTYTA

Transpose and multiply by TT

Parallel Householder QR 2D algorithm

2D householder QR, compute YTTYTA and subsequently
QTA=A—YTTYTA

Y(TTW)=YTTYTA

Broadcast and multiply by Y

2D Householder QR analysis

Q: What is the bandwidth cost of the 2D Householder QR algorithm?

@ Hint: we have VP steps where we work with n x n/ﬁ panels
distributed over v/P processors

A: O(Z5 - B), O(v/P) collectives with n/v/P x n/+/P blocks

Q And what is the synchronization cost?

Hint: is it dominated by communicating panels or computing
Householder vectors?

A: O(nlog(P) - @)
Recall that the 1D cost was O(P - log(P) - a + n? - 3), the 2D
algorithm has a lesser bandwidth cost, but a higher latency cost

2.5D Householder QR

2D Householder QR looks similar to 2D LU, so we can hope to do 2.5D
Householder QR
@ we'll come back to synchronization cost, first lets try to get
O(n?/./cp) bandwidth
@ we can adapt the same idea of factorizing panels of sizes n x n/c
using a v/cP x \/Tk processor grid
@ however, how do we aggregate Householder updated like Schur
complement updates?
o to get Yy - (Ty Yy A), we first need to fully compute Y, A
@ moreover, we need the fully updated (/ — Yo T4 Y,")T A to compute
the next update by Y;"
@ solution: delay the trailing matrix update and aggregate Y further

@ terminology: left-looking algorithms (as opposed to right looking),
also possible in 2D and for LU

2.5D Householder QR

A problem with some 2.5D/3D algorithms

The outlined scheme achieves O(n?/,/cp) communication like 2.5D LU

@ however, it has an overhead due to a type of communication we have
for now ignored...

@ we are trying to multiply a large replicated Y matrix by skinny panels
@ 2D algorithms multiply relatively square matrices

o if the large matrices do not fit into cache, memory bandwidth can
become a bottleneck

@ 2.5D matrix multiplication did not have this problem, neither did the
recursive LU algorithm

@ 2.5D LU as described had this problem, but it can be addressed by
delaying computation of the Schur complement update aggregates

@ next, we will study a 2.5D QR algorithm that uses recursion to avoid
memory-bandwidth overheads

Short pause

Parallel Givens QR Givens rotations

Pairwise rotations
Givens rotations provide an alternative to Householder transformations

Cc

. L . s .
@ a Givens rotation is given by a 2 x 2 matrix Q = { c]’ with ¢, s chosen
an 0

@ to obtain ¢ and s, we can note that the desired elimination yields the

condition {al 32] [C} = [a}
a ail| |s 0
@ LU combined with the orthogonalization condition provides a closed-form
solution: ¢ = a1/\/aj + a3, s = —ap/+\/a; + a3

@ Givens rotations have the ability to preserve sparsity and can be more
parallelizable

so that QQT =/ and for a given vector a, Q7 [al] = {O‘]

@ LU with pairwise pivoting is similar, it generates matrix
1 0
L7t = hat L71a = T
{_az/al 1] sothat L='a=[8 0]
@ both of these rotation matrices can be embedded into larger matrices to act
on neighboring elements of a column as well as ones separated by any
number of rows

Parallel Givens QR Givens rotations

Pairwise rotations

Pairwise rotations may be blocked in a few convenient ways
@ for n x n matrix A, we can compute A = TR with upper-triangular R
and T orthogonal or lower triangular, by either n(n — 1)/2 rotations
or a standard method, e.g. Householder

o for 2n x n matrix [gl] we can compute A= T [R] where T can be
2

0
represented with n(n + 1)/2 rotations
@ these two steps suggest a recursive scheme for QR or LU with
pairwise pivoting (due to Frens and Wise 2003)
A1 A12] [Un A12:| [Rn A12]
— —
[A21 Az U Ax 0 Ax
first factorize the right n x n/2 submatrix via two recursive QR calls,
then update the right half and compute the QR of the lower right

submatrix
Ri1 Ro1 . Ri1 R
0 822 0 R22

Parallel Givens QR Naive parallel recursive QR

Frens and Wise recursive QR

LR B
QR N E

requires four recursive calls to QR
Q: which of these calls can be done concurrently?
A: only the first two, three of them must be done in sequence
therefore, the parallel cost is at least
pr(n, P) = 3T|:W(n/2, P) + O(T|\/||\/|(n/2, P))
the cost O(f3 - n?/v/cP) decreases with each level by factor of 4/3
after k recursive levels the base cases have a bandwidth cost of
Tew(n, P, k) > 3% (n/24)* - 5 = (3/4)n* - B
to get Trw(n, P, k) < n?/v/cP, we need k = logy/3(v cP)
the number of these base cases, and subsequently the synchronization
cost is 2084/3(VeP) _ \ /cpoess(?) (cP)!2
ugly, but technically still better than O(n - «)

Parallel Givens QR Naive parallel recursive QR

Can we do more block QR factorizations concurrently?

@ yes, if we consider smaller blocks
@ the wavefront of available concurrent work is slanted with a 2:1 ratio

Tiskin's QR algorithm

Lets work with the 2:1 ratio directly by considering slanted panels!
[Tiskin 2007]

Embed the original matrix into a matrix with a slanted panel and perform
QR on the slanted panel.
Represents problem so that the full wavefront (pipeline) is active.

Parallel Givens QR Slanted panel recursive QR

A generalized subproblem

Parallel Givens QR Slanted panel recursive QR

Slanted panel recursion

\

Parallel Givens QR Slanted panel recursive QR

Slanted panel recursion, different view

Ay A2 B| B>

Parallel Givens QR Slanted panel recursive QR

Slanted panel base case

) o

Details on Tiskin's QR algorithm

The subproblem is a slanted panel with row dimension n and width m

@ the algorithm has two recursive calls with subpanels of half the width
(one has a few less rows)

@ the orthogonal transformation formed at each recursive step has the
same structure as the eliminated subpanel

o therefore T is a matrix of dimension n with bandwidth m/2

@ to get the next T we need to multiply the Ts obtained from
subproblems

@ we also need to update the trailing subpanel

@ these correspond to multiplications of banded matrices, a slanted
nx m x m/2 cuboid

@ its possible to subdivide these multiplications into P blocks with area
O((nm?/P)?/3)

Cost analysis on Tiskin's QR algorithm

Two recursive calls and a matrix multiplication every step

@ the base cases can be done in just two stages with O(1) syncs.

@ this is where keeping the slanted panel structure pays off, obtaining a
QR factorization of a rectangular matrix with the same number of
elements as slanted panel is more expensive

@ overall we get the recursion with BSP cost

T(n,m,P)=2T(n,m/2, P) + O(a + (nm?/P)?/3 . B)

o bandwidth cost decreases by a factor of 22/3 at each recursive level

@ the base-cases have cost T(n, mg, Po) = O(a + nmq/Py - B), so long
as mg < n/PO

@ we can select mg = n/P2/3 and Py = P2/3 to obtain the total cost

Tqr = O(P?3 - a + n?/P?/3 . B)

@ by doing the multiplications differently and having a larger base case
we can get from P2?/3 to v/cP in both terms

	Parallel Householder QR
	Householder vector aggregation
	1D algorithm
	2D algorithm
	2.5D algorithm

	Administrative interlude
	Parallel Givens QR
	Givens rotations
	Naive parallel recursive QR
	Slanted panel recursive QR

