
CS 598: Communication Cost Analysis of Algorithms
Lecture 8: scalable QR factorization of rectangular matrices

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 19, 2016

Review cyclic and block-cyclic layouts Layouts

Matrix

Review cyclic and block-cyclic layouts Layouts

Blocked layout

Review cyclic and block-cyclic layouts Layouts

Block-cyclic layout

Review cyclic and block-cyclic layouts Layouts

Cyclic layout

Review cyclic and block-cyclic layouts Recursive algorithms

Recursion with cyclic layout

All processors work until base-case

T (n,P) = 2T (n/2,P) + O(α · log(P) + n2/P · β),

T (n0,P) = O(α · log(P) + n20 · β)

Motivation Introduction

Rectangular QR

Consider QR factorization of m × n matrix A when m ≥ n

so far we have focused on m = n
we will first consider m ≥ nP, then the more general case
we can decompose Q and R in A = QR as follows

Q: given Q1R1 = A and QT
1 Q1 = I , would choosing Q2 = 0 yield a

valid QR decomposition of A?
A: no, it would not satisfy the orthogonality criterion, QTQ = I
we need Q1Q

T
2 = 0 and Q2Q

T
2 = I ; given Q1, Q2 is not unique

Motivation Applications

Rectangular QR for least squares

Given m × n matrix A with m ≤ n, compute argminx∈Rn(||Ax − b||2)

solve Rx = QTb, i.e. x = R+QTb

R+ = [R−11 0] where R1 is n × n

Q: given Q1 (the first n columns of Q), do we need Q2?

A: No, since, QTb =

[
QT

1 b
QT

2 b

]
and [R−11 0]

[
QT

1 b
QT

2 b

]
= R−11 QT

1 b

rectangular QR factorizations are also used in iterative methods such
as block-Arnoldi (orthogonalization is used implicitly in many others)

in these methods it typically suffices to have Q1

Motivation Applications

Rectangular QR within square QR

QR of tall and skinny matrices is also a subroutine in square matrix
factorizations

in the last lecture, we utilized QR factorizations of matrix panels
within 2D QR

panel QR factorizations are also done for SVD and eigenvalue
decompositions

in the case of 2D QR, we apply the full m ×m transformation QT

Q: what representation could we use for Q computed from an m × n
matrix A, to compute QTB where B is n× k, with mnk computation?

A: Householder: Q = (I − YTY T), where Y is m × n

Parallel Tall-Skinny QR factorization Cholesky QR

Tall-skinny QR (TSQR)

Given an m × n matrix A, distributed over P processors so that Π(i) owns
A(in/P + 1 : (i + 1)n/P, :)

we can use Householder QR, but this requires n log(P)
synchronizations

there are a few alternative algorithms that achieve require O(log(P))
synchronizations

the simplest is probably Cholesky-QR

compute symmetric matrix B = ATA
factorize B using Cholesky B = LLT = RT

1 R1

perform ‘TRSM’ (back-substitution) Q1 = AR−1
1

cheap but not stable, cond(B) = cond(A)2, so radical instability when
cond(A) ≥ 1/

√
εmach

orthogonality of Q is often poor

Parallel Tall-Skinny QR factorization Cholesky QR

Cholesky QR2

Cholesky-QR can be made more stable [Yamamoto et al 2014]

as before, compute {Q̄1, R̄1} = Cholesky-QR(A)

then, iterate! {Q1, R̂1} = Cholesky-QR(Q̄1)

R1 = R̂1R̄1

A = Q1R1

solution still bad when cond(A) ≥ 1/
√
εmach

but if cond(A) < 1/
√
εmach, it is numerically stable because

cond(Q̄1) ≈ 1
parallel Cholesky-QR2

1 perform ATA using an allreduce of size n2/2
2 compute Cholesky redundantly and TRSM to get Q̄1 and R̄1

3 perform Q̄T
1 Q̄1 using an allreduce of size n2/2

4 compute Cholesky redundantly, TRSM, and R1 = R̂1R̄1 to get Q1, R1

5 TCholesky-QR2(m, n,P) = 2Tallred(n2/2,P) = 2n2 · β + 4 log2(P) · α
for QR of a tall-skinny A with cond(A) < 1/

√
εmach, this algorithm is

trivial to implement, stable, and very fast

Parallel Tall-Skinny QR factorization Recursive TSQR

Recursive TSQR

Block Givens rotations yield another idea

we can also employ a recursive scheme analogous to tournament
pivoting for LU

subdivide A =

[
AU

AL

]
and recursively compute {QU,RU} = QR(AU),

{QL,RL} = QR(AL) concurrently with P/2 processors each

we have A =

[
QURU

QLRL

]
=

[
QU 0
0 QL

] [
RU

RL

]
(all)gather RU and RL and compute sequentially,

[
RU

RL

]
= Q̃R

we now have A = QR where Q =

[
QU 0
0 QL

]
Q̃

Parallel Tall-Skinny QR factorization Recursive TSQR

Recursive TSQR, binary tree (binomial comm. pattern)

Householder vectors are denoted in yellow (R is R1)

Parallel Tall-Skinny QR factorization Recursive TSQR

Recursive TSQR, butterfly, redundant R computation

Householder vectors are denoted in yellow (R is R1)

Parallel Tall-Skinny QR factorization Recursive TSQR

Cost analysis of recursive TSQR, butterfly

We can subdivide the cost into base cases (tree leaves) and internal nodes

let the cost per flop be γ

every processor computes a QR of their m/P × n leaf matrix block

TRec-TSQR(m0, n, 1) = m0n
2 · γ

Q: what cost do we incur at every tree node

TRec-TSQR(m, n,P) = TRec-TSQR(m/2, n,P/2) + O(?)

A: O(n3 · γ + n2 · β + α), for a total cost of

TRec-TSQR(m, n,P) = O([mn2/P+n3 log(P)]·γ+n2 log(P)·β+log(P)·α)

Q: How does this bandwidth cost compare to Cholesky-QR2?

Hint: the communication cost of Cholesky-QR2 is 2Tallreduce(n2/2,P)

A: The cost of recursive TSQR is a factor of O(log(P)) greater.

Parallel Tall-Skinny QR factorization Recursive TSQR

Computing Q1 in recursive TSQR

Lets now consider how to compute the m × n set of orthonormal columns
Q1 such that A = Q1R1 for n × n upper-triangular R1

we had the recurrence Q =

[
QU 0
0 QL

]
Q̃

these orthogonal factors: QL, QU , Q̃ have a lot of structure,
especially if represented with Householder vectors or Givens rotations

Q: how do we compute Q when performing regular Givens rotations?

A: by applying them to an identity matrix, similar idea here...

instead of computing the full m ×m matrix Q (which really, we never

want explicitly), we can apply the implicit representation of Q to

[
I
0

]
where I is n × n to get Q1

this has the same cost as the tree for computing R, except now we do
it backwards

Parallel Tall-Skinny QR factorization Recursive TSQR

Computing Q1 in recursive TSQR

Administrative interlude

Short pause

Administrative interlude

Homeworks and projects

any questions on homework problems?

office hours Tuesday 3-4

posts on Piazza on late Tuesday evening may not get a response until
Wednesday morning

first project proposal due Sep 28th, email me or stop by to discuss
preliminary ideas

Applying QT from recursive TSQR Binary tree apply-QT

Recursive TSQR within a 2D algorithm

Consider using recursive TSQR for n × b panel factorizations to factorize
an n × n matrix using a 2D algorithm

each of n/b TSQRs would have cost

TRec-TSQR(n, b,
√
P) = O(b2 log(P) · β + log(P) · α)

Q: if we want to achieve a bandwidth cost of O(n2/
√
P · β) in the

entire 2D algorithm, how does Rec-TSQR restrict our choice of b?
A: b ≤ n√

P log(P)

to perform trailing matrix updates, we need to multiply by QT , where
we can again use its implicit tree representation
Q: would we need to traverse the tree from the leaves to the root, as
we did when computing R, or from the root to the leaves as we did
for computing Q1?
A: from the leaves to the root, since

QT =

([
QU 0
0 QL

]
Q̃

)T

= Q̃T

[
QT

U 0
0 QT

L

]

Applying QT from recursive TSQR Binary tree apply-QT

Apply implicit QT via binary tree

Applying QT from recursive TSQR Binary tree apply-QT

Cost analysis of applying QT via binary tree

We need to apply QT for each panel, n/b times

every time, we need to update up to n − b = O(n) columns

the cost of the update done in the tree leaves is

O
(n2b

P
· γ +

nb√
P
· β + log(P) · α

)
for every tree node, we need to communicate the b updated rows, a
block of dimension proportional to b × n/

√
P

Q: what is then the bandwidth cost of whole tree update?

A: O(nb log(P)/
√
P · β), the tree nodes cost:

O
(nb2 log(P)

P
· γ +

nb log(P)√
P

· β + log(P) · α
)

since there are n/b such updates, the 2D algorithm would have a

bandwidth cost of at least O
(
n2 log(P)√

P
· β
)

Applying QT from recursive TSQR Binary tree apply-QT

Apply implicit QT via butterfly

Subdivide updated columns recursively to keep all processors busy

T (b, n,P) = T (b, n/2,P/2) + O

(
nb2

P
· γ + β · nb/

√
P + α

)

Applying QT from recursive TSQR Binary tree apply-QT

Apply implicit QT via butterfly

After recursion, return the columns back to owner, for a total cost of

T (b, n,P) = O

(
nb2

P
· γ + β · nb/

√
P + α · log(P)

)

Householder vector reconstruction Recovering Householder vectors from Q1

Motivation for Householder reconstruction

The trailing matrix update in Householder QR is still the most efficient

consists of O(1) matrix multiplications

requires standard collective communication, rather than an
algorithmic tree

compliant with standard libraries (ScaLAPACK returns Y not Q for
dgeqrf)

moreover, how do we do a trailing matrix update with Cholesky-QR2?

Householder vector reconstruction Recovering Householder vectors from Q1

Householder reconstruction

Given m × n matrix Q1, we can construct Y such that
Q = (I − YTY T) = [Q1,Q2] and Q is orthogonal

key idea due to Yusaku Yamamoto (2013)

note that in the Householder representation, we have
I − Q = Y · TY T , where Y is lower-trapezoidal and TY T is
upper-trapezoidal

let Q1 =

[
Q11

Q21

]
where Q11 is n × n, compute

{Y ,TY T
1 } = LU

([I − Q11

Q21

])
,

where Y1 is the upper-triangular n × n leading block of Y T

Householder vector reconstruction Recovering Householder vectors from Q1

Householder reconstruction stability

Householder reconstruction can be done with unconditional stability

we need to be just a little more careful

{Y ,TY T
1 } = LU

([S − Q11

Q21

])
,

where S is a sign matrix (each value in {−1, 1}) with values picked to
match the sign of the diagonal entry within LU

these are the sign choices we need to make for regular Householder
factorization

since all entries of Q1 are ≤ 1, pivoting is unnecessary (partial
pivoting would do nothing)

since cond(Q) ≈ 1, Householder reconstruction is stable

Householder vector reconstruction Consequences for 2D and 3D algorithms

Householder reconstruction for square matrix factorizations

Householder reconstruction provides a kind of abstraction between the
panel factorization and trailing matrix update

use algorithm of choice for panel QR, e.g. Cholesky-QR(2) or
recursive TSQR

construct Q1 and reconstruct Y

construction of Q1 should cost no more than the factorization itself
performing LU of Q1 requires a sequential n × n LU and a broadcast of
the U factor for TRSM

now perform trailing matrix update as if we had done Householder QR

so we can achieve same bandwidth costs as in previous lecture, but
lower synchronization cost (O(

√
cP · α))

for recursive TSQR, extra factor of log(P) in bandwidth cost requires
a block size smaller by a factor of log(P), yielding log(P) higher
synchronization cost than if we use Cholesky-QR2

QR for general rectangular matrices Bridging the gap

QR for rectangular matrices

What if we want to factorize an m × n rectangular matrix, where m > n,
but not m� n

TSQR algorithms have cost factors of O(n3 · γ + n2 · β) or higher,
which may be problematic

2D and 3D algorithms have assumed m = n

there are a couple of alternative approaches for the general case

intuitively, we want to use processor grids that match the dimensions
of the m × n × n problem

QR for general rectangular matrices Bridging the gap

Elmroth-Gustavson algorithm (3Dx2Dx1D)

One approach is to use column-recursion A = [A1,A2]

compute {Y1,T1,R1} = QR(A1) recursively with P processors

perform rectangular matrix multiplications with
communication-avoiding algorithms to compute
B2 = (I − Y1T1Y

T
1)TA2

compute {Y2,T2,R2} = QR(B22) where B2 =

[
R12

B22

]
recursively

concatenate Y1 and Y2 into Y and compute T from Y via
rectangular matrix multiplication

output
{
Y ,T ,

[
R1 R12

0 R2

]}
pick an appropriate number of columns for a TSQR base-case

QR for general rectangular matrices Bridging the gap

Elmroth-Gustavson algorithm (1Dx2Dx3D)

Another approach is to use “row-recursion”

perform recursive TSQR, where each node in the tree is factorized
with Pn/m processors (if P ≥ m/n, a TSQR algorithm is the best
option anyway)

leaf nodes will require just a square QR

tree nodes require QR of two stacked upper-triangular matrices

interleave the rows of the upper-triangular matrices and you get a
2 : 1 ratio, i.e. slanted panel, so can use Tiskin’s QR algorithm
without embedding!

both of the proposed approaches achieve a bandwidth cost of

O
((

mn2

P

)2/3
log(P)

)
for n ≤ m ≤ nP

	Review cyclic and block-cyclic layouts
	Layouts
	Recursive algorithms

	Motivation
	Introduction
	Applications

	Parallel Tall-Skinny QR factorization
	Cholesky QR
	Recursive TSQR

	Administrative interlude
	Applying QT from recursive TSQR
	Binary tree apply-QT

	Householder vector reconstruction
	Recovering Householder vectors from Q1
	Consequences for 2D and 3D algorithms

	QR for general rectangular matrices
	Bridging the gap

