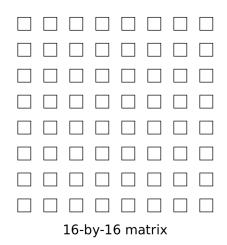
CS 598: Communication Cost Analysis of Algorithms Lecture 8: scalable QR factorization of rectangular matrices

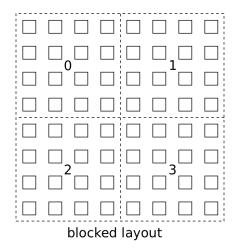
Edgar Solomonik

University of Illinois at Urbana-Champaign

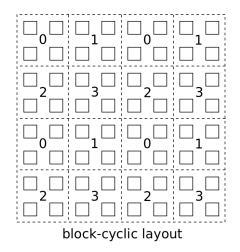
September 19, 2016



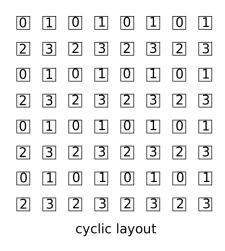
Blocked layout



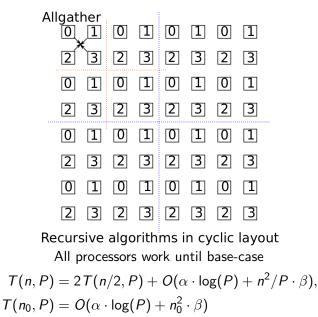
Block-cyclic layout



Cyclic layout



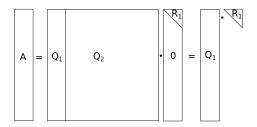
Recursion with cyclic layout



Rectangular QR

Consider QR factorization of $m \times n$ matrix A when $m \ge n$

- so far we have focused on m = n
- we will first consider $m \ge nP$, then the more general case
- we can decompose Q and R in A = QR as follows



• Q: given $Q_1R_1 = A$ and $Q_1^TQ_1 = I$, would choosing $Q_2 = 0$ yield a valid QR decomposition of A?

• A: no, it would not satisfy the orthogonality criterion, $Q^T Q = I$

• we need $Q_1 Q_2^T = 0$ and $Q_2 Q_2^T = I$; given Q_1 , Q_2 is not unique

Rectangular QR for least squares

Given $m \times n$ matrix A with $m \le n$, compute $\operatorname{argmin}_{x \in \mathbb{R}^n}(||Ax - b||_2)$

- solve $Rx = Q^T b$, i.e. $x = R^+ Q^T b$
- $R^+ = [R_1^{-1} \quad 0]$ where R_1 is $n \times n$
- Q: given Q_1 (the first *n* columns of Q), do we need Q_2 ?

• A: No, since,
$$Q^T b = \begin{bmatrix} Q_1^T b \\ Q_2^T b \end{bmatrix}$$
 and $\begin{bmatrix} R_1^{-1} & 0 \end{bmatrix} \begin{bmatrix} Q_1^T b \\ Q_2^T b \end{bmatrix} = R_1^{-1} Q_1^T b$

- rectangular QR factorizations are also used in iterative methods such as block-Arnoldi (orthogonalization is used implicitly in many others)
- in these methods it typically suffices to have Q_1

Rectangular QR within square QR

QR of tall and skinny matrices is also a subroutine in square matrix factorizations

- in the last lecture, we utilized QR factorizations of matrix panels within 2D QR
- panel QR factorizations are also done for SVD and eigenvalue decompositions
- in the case of 2D QR, we apply the full $m \times m$ transformation Q^T
- Q: what representation could we use for Q computed from an $m \times n$ matrix A, to compute $Q^T B$ where B is $n \times k$, with mnk computation?
- A: Householder: $Q = (I YTY^T)$, where Y is $m \times n$

Tall-skinny QR (TSQR)

Given an $m \times n$ matrix A, distributed over P processors so that $\Pi(i)$ owns A(in/P + 1 : (i + 1)n/P, :)

- we can use Householder QR, but this requires $n \log(P)$ synchronizations
- there are a few alternative algorithms that achieve require $O(\log(P))$ synchronizations
- the simplest is probably Cholesky-QR
 - compute symmetric matrix $B = A^T A$
 - factorize *B* using Cholesky $B = LL^T = R_1^T R_1$
 - perform 'TRSM' (back-substitution) $Q_1 = AR_1^{-1}$
 - cheap but not stable, ${\rm cond}(B)={\rm cond}(A)^2$, so radical instability when ${\rm cond}(A)\geq 1/\sqrt{\epsilon_{\rm mach}}$
 - orthogonality of Q is often poor

Cholesky QR2

Cholesky-QR can be made more stable [Yamamoto et al 2014]

- as before, compute $\{\bar{Q}_1, \bar{R}_1\} = \text{Cholesky-QR}(A)$
- then, iterate! $\{Q_1, \hat{R}_1\} = \text{Cholesky-QR}(\bar{Q}_1)$
- $R_1 = \hat{R}_1 \bar{R}_1$
- $A = Q_1 R_1$
- ullet solution still bad when ${\rm cond}({\it A}) \geq 1/\sqrt{\epsilon_{{\rm mach}}}$
- but if cond(A) $< 1/\sqrt{\epsilon_{\rm mach}},$ it is numerically stable because cond($\bar{Q}_1) \approx 1$
- parallel Cholesky-QR2
 - perform $A^T A$ using an allreduce of size $n^2/2$
 - 2 compute Cholesky redundantly and TRSM to get $ar{Q}_1$ and $ar{R}_1$
 - **(**) perform $\bar{Q}_1^T \bar{Q}_1$ using an allreduce of size $n^2/2$
 - **③** compute Cholesky redundantly, TRSM, and $R_1 = \hat{R}_1 \bar{R}_1$ to get Q_1 , R_1

 $T_{\text{Cholesky-QR2}}(m, n, P) = 2T_{\text{allred}}(n^2/2, P) = 2n^2 \cdot \beta + 4\log_2(P) \cdot \alpha$

• for QR of a tall-skinny A with $cond(A) < 1/\sqrt{\epsilon_{mach}}$, this algorithm is trivial to implement, stable, and very fast

Recursive TSQR

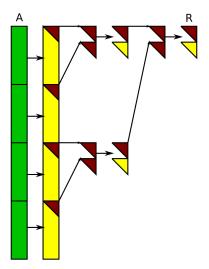
Block Givens rotations yield another idea

- we can also employ a recursive scheme analogous to tournament pivoting for LU
- subdivide $A = \begin{bmatrix} A_U \\ A_I \end{bmatrix}$ and recursively compute $\{Q_U, R_U\} = QR(A_U)$, $\{Q_{I}, R_{I}\} = QR(A_{I})$ concurrently with P/2 processors each • we have $A = \begin{bmatrix} Q_U R_U \\ Q_I R_I \end{bmatrix} = \begin{bmatrix} Q_U & 0 \\ 0 & Q_I \end{bmatrix} \begin{bmatrix} R_U \\ R_I \end{bmatrix}$

• (all)gather $R_{\rm U}$ and $R_{\rm L}$ and compute sequentially, $\begin{vmatrix} R_{\rm U} \\ R_{\rm I} \end{vmatrix} = \tilde{Q}R$

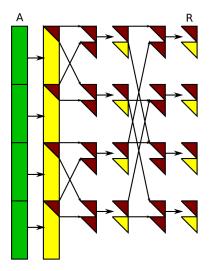
• we now have
$$A = QR$$
 where $Q = \begin{bmatrix} Q_U & 0 \\ 0 & Q_L \end{bmatrix} \tilde{Q}$

Recursive TSQR, binary tree (binomial comm. pattern)



Householder vectors are denoted in yellow (R is R_1)

Recursive TSQR, butterfly, redundant R computation



Householder vectors are denoted in yellow (R is R_1)

Cost analysis of recursive TSQR, butterfly

We can subdivide the cost into base cases (tree leaves) and internal nodes

- $\bullet\,$ let the cost per flop be $\gamma\,$
- every processor computes a QR of their $m/P \times n$ leaf matrix block

$$T_{\text{Rec-TSQR}}(m_0, n, 1) = m_0 n^2 \cdot \gamma$$

• Q: what cost do we incur at every tree node

$$T_{\text{Rec-TSQR}}(m, n, P) = T_{\text{Rec-TSQR}}(m/2, n, P/2) + O(?)$$

• A: $O(n^3 \cdot \gamma + n^2 \cdot \beta + \alpha)$, for a total cost of

 $T_{\text{Rec-TSQR}}(m, n, P) = O([mn^2/P + n^3 \log(P)] \cdot \gamma + n^2 \log(P) \cdot \beta + \log(P) \cdot \alpha)$

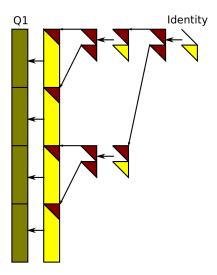
- Q: How does this bandwidth cost compare to Cholesky-QR2?
- Hint: the communication cost of Cholesky-QR2 is $2T_{\text{allreduce}}(n^2/2, P)$
- A: The cost of recursive TSQR is a factor of $O(\log(P))$ greater.

Computing Q_1 in recursive TSQR

Lets now consider how to compute the $m \times n$ set of orthonormal columns Q_1 such that $A = Q_1 R_1$ for $n \times n$ upper-triangular R_1

- we had the recurrence $Q = \begin{bmatrix} Q_U & 0 \\ 0 & Q_L \end{bmatrix} \tilde{Q}$
- these orthogonal factors: Q_L , Q_U , \tilde{Q} have a lot of structure, especially if represented with Householder vectors or Givens rotations
- Q: how do we compute Q when performing regular Givens rotations?
- A: by applying them to an identity matrix, similar idea here...
- instead of computing the full $m \times m$ matrix Q (which really, we never want explicitly), we can apply the implicit representation of Q to $\begin{bmatrix} I \\ 0 \end{bmatrix}$ where I is $n \times n$ to get Q_1
- this has the same cost as the tree for computing *R*, except now we do it backwards

Computing Q_1 in recursive TSQR



Short pause

Homeworks and projects

- any questions on homework problems?
- office hours Tuesday 3-4
- posts on Piazza on late Tuesday evening may not get a response until Wednesday morning
- first project proposal due Sep 28th, email me or stop by to discuss preliminary ideas

Recursive TSQR within a 2D algorithm

Consider using recursive TSQR for $n \times b$ panel factorizations to factorize an $n \times n$ matrix using a 2D algorithm

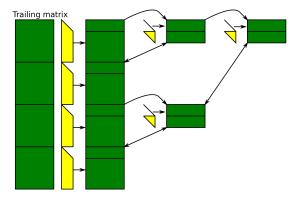
• each of n/b TSQRs would have cost

$$T_{\mathsf{Rec-TSQR}}(n, b, \sqrt{P}) = O(b^2 \log(P) \cdot \beta + \log(P) \cdot \alpha)$$

- Q: if we want to achieve a bandwidth cost of O(n²/√P · β) in the entire 2D algorithm, how does Rec-TSQR restrict our choice of b?
- A: $b \leq \frac{n}{\sqrt{P}\log(P)}$
- to perform trailing matrix updates, we need to multiply by Q^T , where we can again use its implicit tree representation
- Q: would we need to traverse the tree from the leaves to the root, as we did when computing *R*, or from the root to the leaves as we did for computing *Q*₁?
- A: from the leaves to the root, since

$$Q^{T} = \left(\begin{bmatrix} Q_{\mathsf{U}} & 0\\ 0 & Q_{\mathsf{L}} \end{bmatrix} \tilde{Q} \right)^{T} = \tilde{Q}^{T} \begin{bmatrix} Q_{\mathsf{U}}^{T} & 0\\ 0 & Q_{\mathsf{L}}^{T} \end{bmatrix}$$

Apply implicit Q^T via binary tree



Cost analysis of applying Q^T via binary tree

We need to apply Q^T for each panel, n/b times

- every time, we need to update up to n b = O(n) columns
- the cost of the update done in the tree leaves is

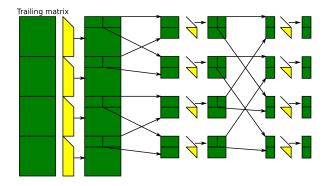
$$O\left(\frac{n^2b}{P}\cdot\gamma+\frac{nb}{\sqrt{P}}\cdot\beta+\log(P)\cdot\alpha\right)$$

- for every tree node, we need to communicate the b updated rows, a block of dimension proportional to $b\times n/\sqrt{P}$
- Q: what is then the bandwidth cost of whole tree update?
- A: $O(nb\log(P)/\sqrt{P} \cdot \beta)$, the tree nodes cost:

$$O\Big(\frac{nb^2\log(P)}{P}\cdot\gamma+\frac{nb\log(P)}{\sqrt{P}}\cdot\beta+\log(P)\cdot\alpha\Big)$$

• since there are n/b such updates, the 2D algorithm would have a bandwidth cost of at least $O\left(\frac{n^2 \log(P)}{\sqrt{P}} \cdot \beta\right)$

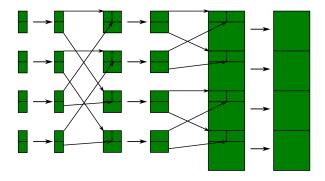
Apply implicit Q^T via butterfly



Subdivide updated columns recursively to keep all processors busy

$$T(b, n, P) = T(b, n/2, P/2) + O\left(\frac{nb^2}{P} \cdot \gamma + \beta \cdot nb/\sqrt{P} + \alpha\right)$$

Apply implicit Q^T via butterfly



After recursion, return the columns back to owner, for a total cost of

$$T(b, n, P) = O\left(\frac{nb^2}{P} \cdot \gamma + \beta \cdot nb/\sqrt{P} + \alpha \cdot \log(P)\right)$$

Motivation for Householder reconstruction

The trailing matrix update in Householder QR is still the most efficient

- consists of O(1) matrix multiplications
- requires standard collective communication, rather than an algorithmic tree
- compliant with standard libraries (ScaLAPACK returns Y not Q for dgeqrf)
- moreover, how do we do a trailing matrix update with Cholesky-QR2?

Householder reconstruction

Given $m \times n$ matrix Q_1 , we can construct Y such that $Q = (I - YTY^T) = [Q_1, Q_2]$ and Q is orthogonal

- key idea due to Yusaku Yamamoto (2013)
- note that in the Householder representation, we have $I Q = Y \cdot TY^T$, where Y is lower-trapezoidal and TY^T is upper-trapezoidal

• let
$$Q_1 = egin{bmatrix} Q_{11} \ Q_{21} \end{bmatrix}$$
 where Q_{11} is $n imes n$, compute

$$\{Y, TY_1^T\} = \mathsf{LU}\Big(\begin{bmatrix}I-Q_{11}\\Q_{21}\end{bmatrix}\Big),$$

where Y_1 is the upper-triangular $n \times n$ leading block of Y^T

Householder reconstruction stability

Householder reconstruction can be done with unconditional stability

• we need to be just a little more careful

$$\{Y, TY_1^T\} = \mathsf{LU}\Big(\begin{bmatrix} S - Q_{11} \\ Q_{21} \end{bmatrix}\Big),$$

where S is a sign matrix (each value in $\{-1,1\}$) with values picked to match the sign of the diagonal entry within LU

- these are the sign choices we need to make for regular Householder factorization
- since all entries of Q_1 are ≤ 1 , pivoting is unnecessary (partial pivoting would do nothing)
- since $cond(Q) \approx 1$, Householder reconstruction is stable

Householder reconstruction for square matrix factorizations

Householder reconstruction provides a kind of abstraction between the panel factorization and trailing matrix update

- use algorithm of choice for panel QR, e.g. Cholesky-QR(2) or recursive TSQR
- construct Q_1 and reconstruct Y
 - construction of Q_1 should cost no more than the factorization itself
 - performing LU of Q_1 requires a sequential $n \times n$ LU and a broadcast of the U factor for TRSM
- now perform trailing matrix update as if we had done Householder QR
- so we can achieve same bandwidth costs as in previous lecture, but lower synchronization cost $(O(\sqrt{cP} \cdot \alpha))$
- for recursive TSQR, extra factor of log(P) in bandwidth cost requires a block size smaller by a factor of log(P), yielding log(P) higher synchronization cost than if we use Cholesky-QR2

QR for rectangular matrices

What if we want to factorize an $m \times n$ rectangular matrix, where m > n, but not $m \gg n$

- TSQR algorithms have cost factors of $O(n^3 \cdot \gamma + n^2 \cdot \beta)$ or higher, which may be problematic
- 2D and 3D algorithms have assumed m = n
- there are a couple of alternative approaches for the general case
- intuitively, we want to use processor grids that match the dimensions of the $m \times n \times n$ problem

Elmroth-Gustavson algorithm (3Dx2Dx1D)

One approach is to use column-recursion $A = [A_1, A_2]$

- compute $\{Y_1, T_1, R_1\} = QR(A_1)$ recursively with P processors
- perform rectangular matrix multiplications with communication-avoiding algorithms to compute $B_2 = (I - Y_1 T_1 Y_1^T)^T A_2$

• compute
$$\{Y_2, T_2, R_2\} = \mathsf{QR}(B_{22})$$
 where $B_2 = \begin{bmatrix} R_{12} \\ B_{22} \end{bmatrix}$ recursively

 concatenate Y₁ and Y₂ into Y and compute T from Y via rectangular matrix multiplication

• output
$$\left\{ Y, T, \begin{bmatrix} R_1 & R_{12} \\ 0 & R_2 \end{bmatrix} \right\}$$

pick an appropriate number of columns for a TSQR base-case

Elmroth-Gustavson algorithm (1Dx2Dx3D)

Another approach is to use "row-recursion"

- perform recursive TSQR, where each node in the tree is factorized with Pn/m processors (if $P \ge m/n$, a TSQR algorithm is the best option anyway)
- leaf nodes will require just a square QR
- tree nodes require QR of two stacked upper-triangular matrices
- interleave the rows of the upper-triangular matrices and you get a 2 : 1 ratio, i.e. slanted panel, so can use Tiskin's QR algorithm without embedding!
- both of the proposed approaches achieve a bandwidth cost of $O\left(\left(\frac{mn^2}{P}\right)^{2/3}\log(P)\right)$ for $n \le m \le nP$