CS 598: Communication Cost Analysis of Algorithms Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 21, 2016

Algorithmic cache management

Consider a computer with unlimited memory and a cache of size ${\boldsymbol{H}}$

- we can design algorithms by manually managing cache transfers
- simple metrics:
 - amount of data moved from memory to cache (bandwidth cost)
 - number of synchronous memory-to-cache transfers (latency cost)
- generally, efficient algorithms in this model try to select blocks of computation that minimize the surface-to-volume ratio
 - i.e., do as much computation with the cache-resident data as possible
 - in other words, exploit temporal and spatial locality

Cache-efficient matrix multiplication

Consider multiplication of $n \times n$ matrices $C = A \cdot B$

```
For i \in [1, n/s], j \in [1, n/t], k \in [1, n/v], define blocks C[i, j], A[i, k], B[k, j] with dimensions s \times t, s \times v, and v \times t, respectively
```

```
for (i = 1 to n/s)
for (j = 1 to n/t)
initialize C[i,j] = 0 in cache
for (k = 1 to n/v)
load A[i,k] into cache
load B[k,j] into cache
C[i,j] = C[i,j] + A[i,k]*B[k,j]
end
write C[i,j] to memory
end
end
```

Q: What restriction must we impose to insure A[i, k], B[k, j] and C[i, j] fit in cache simultaneously? A: $st + sv + vt \le H$

Memory-bandwidth analysis of matrix multiplication

So we have the constraint, $st + sv + vt \le H$

- there are a total of (n/s)(n/t)(n/v) inner loop iterations
- Q: what is the asymptotic memory latency cost of the algorithm
- A: the number of inner loop iterations, $n^3/(stv)$
- since each block of C stays resident in the innermost loop, we write each element of C to memory only once
- we read each block $s \times v$ block of A and $v \times t$ block of B in each innermost loop
- Q: how many times do we read each element of A and B?
- A: n/t and n/s, respectively
- therefore, the bandwidth cost is

 $Q = n^2 + (n/s + n/t)n^2 = n^2 + n^3/s + n^3/t$

- if we pick $s = t = v = \sqrt{H/3}$, we satisfy the constraint and obtain $Q \approx 2n^3/\sqrt{H/3}$, with $n^3/H^{3/2}$ memory latency cost
- if we pick $s = t = \sqrt{H 2\sqrt{H}}$ and v = 1, we obtain $Q \approx 2n^3/\sqrt{H}$ with n^3/H memory latency cost

Memory-bandwidth cost of LU decomposition

For most dense linear algebra problems, achieving good bandwidth cost is strictly easier in the sequential case than in the parallel case

- example: non-pivoted LU factorization
- we can use the same recursive algorithm, two recursive calls, O(1) matrix multiplications
- $T(n, H) = 2T(n/2) + O(\nu \cdot n^3/\sqrt{H})$ where ν is inverse of memory bandwidth
- cost decreases geometrically by factor of 4 with each level, we can stop at base case dimension $n_0 = \sqrt{H}$ and compute LU sequentially
- memory latency cost is just $O(n^3/H^{3/2} \cdot \nu)$, same as matrix multiplication
- Q: given memory bandwidth cost $O(n^3/\sqrt{H} \cdot \nu)$, why is it not possible to have less than a $\Theta(n^3/H^{3/2})$ memory latency cost?
- A: we cannot transfer messages larger than the cache size H

Memory-bandwidth cost of eigenvalue decompositions

The symmetric matrix eigenvalue problem (nearly same as nonsymmtric SVD) provides a nice example of where memory-bandwidth requires extra consideration with respect to distributed memory bandwidth cost

- probably the last dense numerical linear algebra problem we study in this course
- given a symmetric matrix A, we would like to compute its eigenvalues
- stable algorithms work by first reducing A to tridiagonal form, then using the MRRR algorithm
- the reduction to tridiagonal form dominates the cost
- needs to be done via two-sided orthogonalization to preserve eigenvalues $T = Q^T A Q$

Direct tridiagonalization

We can perform two-sided orthogonalization via Householder QR

- compute Householder vector to eliminate n 2 lower entries of first column
- $Q_1^T A = (I 2uu^T)A$ does not affect top row, so we can perform $Q_1^T A Q_1$
- applying Q_1^T from the left is independent across columns
- applying Q_1 from the right is independent across rows
- this means we need to compute $Q_1^T A Q_1$ fully, before we can compute the Householder vector of the next column
- for designing a 2D algorithm, we can keep A in place and broadcast the vectors, for $O(n^2/\sqrt{P})$ communication
- but if the matrix blocks do not fit in cache $(n^2/P \ge H)$, we will have $O(n^3/P)$ memory bandwidth cost (no reuse), rather than $O(n^3/(P\sqrt{H}))$

Full-to-band reduction

We can alleviate the problem by reducing to a banded matrix first

- compute rectangular QR of $n b \times b$ lower left minor (submatrix)
- Q₁^TA = (I 2uu^T)A reduces first b columns to bandwidth 2b and does not affect top b rows, so we can perform Q₁^TAQ₁
- now we can perform the trailing matrix update by matrix multiplication with rectangular matrices of dimensions $(n b) \times b$
- Q: what is the minimal b we would want to pick to get \sqrt{H} reuse of trailing matrix entries, and consequently $O(n^3/(P\sqrt{H}))$ memory bandwidth cost?
- A: $b = \sqrt{H}$
- it then remains to reduce the banded matrix to tridiagonal form, which can be done via bulge chasing [Lang 1993]

Symmetric band reduction (bulge chasing)

Ideal cache model

A more accurate model is to consider a cache line size L in addition to the cache size ${\cal H}$

- each memory-to-cache transfer has size L
- new unified metric: cache misses (number of cache lines transferred)
- the bandwidth cost is the number of cache misses multiplied by L
- the (old) latency cost (number of transfers) is disregarded
- assume 'tall' cache, $L \leq \sqrt{H}$ (more convenient, $H = \Omega(L^2)$)
- we can now consider different caching protocols
- an ideal cache model corresponds to the assumption that the protocol always makes the best decision
- this ideal cache model is in a sense equivalent to a manually orchestrated cache protocol
- arbitrary manual orchestration can be achieved with an LRU (lest-recently-used protocol)

Matrix transposition in the ideal cache model

Matrix multiplication bandwidth cost with a tall cache is not affected by L

- if we read square blocks into cache they have dimension $\Theta(L)$
- if we compute outer products, just need to transpose B initially
- $n \times n$ matrix transposition becomes non-trivial
 - when L = 1 (original model), there is no notion of how a matrix is laid out in memory
 - for general *L*, we should read $\sqrt{H} \times \sqrt{H}$ blocks into cache, transpose them, then write them to memory to get linear bandwidth cost $O(n^2)$
 - matrix transposition is a very useful subroutine when we need to ensure contiguous access to cache lines

Cache obliviousness

Introduced by Frigo, Leiserson, Prokop, Ramachadran (original paper worth reading)

- basic idea: algorithms should not be parameterized by architectural parameters
- good ideas in computer science are most often good abstractions
- designing an algorithm obliviously of cache size makes it portable and efficient for all levels of a cache hierarchy
- cache oblivious algorithms are stated without explicit control of data movement
- their communication cost is derived by assuming an ideal cache model
- ideal caches can be simulated by an LRU cache protocol for most (regular) algorithms

Cache oblivious matrix transposition

Given $m \times n$ matrix A, compute $B = A^T$

Cache oblivious matrix multiplication

Given $m \times k$ matrix A and $k \times n$ matrix B, compute $m \times n$ matrix C = AB• if $k \ge m$ and $k \ge m$ subdivide $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ and $B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$ and compute recursively, $\overline{C} = A_1B_1$, $\widehat{C} = A_2B_2$, then $C = \overline{C} + \widehat{C}$ • if n > k and $n \ge m$ subdivide $C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}$ and $B = \begin{bmatrix} B_1 & B_2 \end{bmatrix}$ and compute recursively, $C_1 = AB_1$, $C_2 = AB_2$

• if m > k and m > n subdivide $C = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ and $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$ and compute recursively, $C_1 = A_1B$, $C_2 = A_2B$

Short pause

DFT matrix

These notes are based on James Demmel's book, "Applied Numerical Linear Algebra"

For any *n*, let $\omega_n = e^{-2\pi i/n}$, so $\omega_n^{n/2} = -1$ and $\omega_n^n = 1$, a DFT matrix of dimension *n* is given by

$$\forall j, k \in [0, n-1]$$
 $D_n(j, k) = \omega_n^{jk}$

for example

$$D_4 = egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & \omega & \omega^2 & \omega^3 \ 1 & \omega^2 & \omega^4 & \omega^6 \ 1 & \omega^3 & \omega^6 & \omega^9 \end{bmatrix}$$

DFT matrix

The matrix $A = \frac{1}{\sqrt{n}}D_n$ is symmetric and unitary $A = A^T = A^*$, $AA^{-1} = I$ D_n^{-1} has the form $D_n^{-1}(j,k) = (1/n)\omega^{-jk}$, now $X = D_n D_n^{-1}$ has the form

$$X(j,k) = (1/n) \sum_{l=0}^{n-1} \omega_n^{jl} \omega_n^{-lk} = (1/n) \sum_{l=0}^{n-1} \omega_n^{l(j-k)}$$

Clearly X(j,j) = 1, while $X(j,j+t) = (1/n) \sum_{l=0}^{n-1} (\omega_n^t)^l$ is a geometric sum for $t \neq 0$, so

$$X(j, j+t) = (1/n) \frac{1 - \omega^{nt}}{1 - \omega^{t}} = 0$$
 since $1 - \omega^{nt} = 1 - (\omega^{n})^{t} = 1 - 1^{t} = 0$

Convolution

[c(0)]

A convolution takes as input vectors a and b and computes vector c

$$\forall k \in [0, n-1]$$
 $c(k) = \sum_{j=0}^{k} a(j)b(k-j)$

- given coefficients of two polynomials of degree n/2 stored in a and b, the convolution computes the coefficients c of the product of the two polynomials
- naive evaluation costs $O(n^2)$ operations
- the convolution can also be interpreted as matrix-vector multiplication with a triangular Toeplitz matrix

$$c(1) \ c(2) \ c(3)] = [a(0) \ a(1) \ a(2) \ a(3)] \cdot \begin{bmatrix} b(0) & b(1) & b(2) & b(3) \\ 0 & b(0) & b(1) & b(2) \\ 0 & 0 & b(0) & b(1) \\ 0 & 0 & 0 & b(0) \end{bmatrix}$$

Convolution via DFT

We can compute

$$\forall k \in [0, n-1]$$
 $c(k) = \sum_{j=0}^{k} a(j)b(k-j)$

via $c = D_n^{-1}[(D_n a) \odot (D_n b)]$ where \odot is an elementwise product

$$z = v \odot w \rightarrow z(i) = v(i) \cdot w(i)$$

- we can find some intuition for this by thinking back to polynomial multiplication
- the DFT $D_n a$ evaluates a polynomial f(x) at $x = \omega^j$ for $j \in [0, n-1]$
- the elementwise product computes the values of the polynomial product at these points
- the inverse DFT D_n^{-1} interpolates back from the points to get the coefficients of the polynomial product

Convolution via DFT

The polynomial interpretation is abstract, lets see what happens algebraically

• first lets write out the full expression in indexed form

$$c(k) = \sum_{s} D_n^{-1}(k, s) \Big(\sum_{j} D_n(s, j) a(j) \Big) \Big(\sum_{t} D_n(s, t) b(t) \Big)$$
$$= \sum_{s} \omega_n^{-ks} \Big(\sum_{j} \omega_n^{sj} a(j) \Big) \Big(\sum_{t} \omega_n^{st} b(t) \Big)$$

• now, lets rearrange the order of the summations to see what happens to every product of *a* and *b*

$$c(k) = \sum_{s} \sum_{j} \sum_{t} \omega_n^{-ks} \omega_n^{sj} \omega_n^{st} a(j) b(t)$$
$$= \sum_{s} \sum_{j} \sum_{t} \omega_n^{(j+t-k)s} a(j) b(t)$$

- we can observe that when j + t k = 0 the products $\omega_n^{(s+t-j)k} = 1$, so the terms a(j)b(k-j) survive!
- For any $u = j + t k \neq 0$, we observe $\sum_{s} (\omega_n^u)^s = 0$, as for $D_n D_n^{-1}$