
CS 598: Communication Cost Analysis of Algorithms
Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

Edgar Solomonik

University of Illinois at Urbana-Champaign

September 21, 2016



Ideal cache model Fast and slow memory

Algorithmic cache management

Consider a computer with unlimited memory and a cache of size H

we can design algorithms by manually managing cache transfers

simple metrics:

amount of data moved from memory to cache (bandwidth cost)
number of synchronous memory-to-cache transfers (latency cost)

generally, efficient algorithms in this model try to select blocks of
computation that minimize the surface-to-volume ratio

i.e., do as much computation with the cache-resident data as possible
in other words, exploit temporal and spatial locality



Ideal cache model Fast and slow memory

Cache-efficient matrix multiplication
Consider multiplication of n × n matrices C = A · B

For i ∈ [1, n/s], j ∈ [1, n/t], k ∈ [1, n/v ], define blocks C [i , j ], A[i , k],
B[k , j ] with dimensions s × t, s × v , and v × t, respectively

for (i = 1 to n/s)
for (j = 1 to n/t)

initialize C[i,j] = 0 in cache
for (k = 1 to n/v)

load A[i,k] into cache
load B[k,j] into cache
C[i,j] = C[i,j] + A[i,k]*B[k,j]

end
write C[i,j] to memory

end
end

Q: What restriction must we impose to insure A[i , k], B[k , j ] and C [i , j ] fit
in cache simultaneously?
A: st + sv + vt ≤ H



Ideal cache model Fast and slow memory

Memory-bandwidth analysis of matrix multiplication

So we have the constraint, st + sv + vt ≤ H

there are a total of (n/s)(n/t)(n/v) inner loop iterations
Q: what is the asymptotic memory latency cost of the algorithm
A: the number of inner loop iterations, n3/(stv)
since each block of C stays resident in the innermost loop, we write
each element of C to memory only once
we read each block s × v block of A and v × t block of B in each
innermost loop
Q: how many times do we read each element of A and B?
A: n/t and n/s, respectively
therefore, the bandwidth cost is
Q = n2 + (n/s + n/t)n2 = n2 + n3/s + n3/t
if we pick s = t = v =

√
H/3, we satisfy the constraint and obtain

Q ≈ 2n3/
√
H/3, with n3/H3/2 memory latency cost

if we pick s = t =
√
H − 2

√
H and v = 1, we obtain Q ≈ 2n3/

√
H

with n3/H memory latency cost



Ideal cache model Fast and slow memory

Memory-bandwidth cost of LU decomposition

For most dense linear algebra problems, achieving good bandwidth cost is
strictly easier in the sequential case than in the parallel case

example: non-pivoted LU factorization

we can use the same recursive algorithm, two recursive calls, O(1)
matrix multiplications

T (n,H) = 2T (n/2) + O(ν · n3/
√
H) where ν is inverse of memory

bandwidth

cost decreases geometrically by factor of 4 with each level, we can
stop at base case dimension n0 =

√
H and compute LU sequentially

memory latency cost is just O(n3/H3/2 · ν), same as matrix
multiplication

Q: given memory bandwidth cost O(n3/
√
H · ν), why is it not

possible to have less than a Θ(n3/H3/2) memory latency cost?

A: we cannot transfer messages larger than the cache size H



Ideal cache model Fast and slow memory

Memory-bandwidth cost of eigenvalue decompositions

The symmetric matrix eigenvalue problem (nearly same as nonsymmtric
SVD) provides a nice example of where memory-bandwidth requires extra
consideration with respect to distributed memory bandwidth cost

probably the last dense numerical linear algebra problem we study in
this course

given a symmetric matrix A, we would like to compute its eigenvalues

stable algorithms work by first reducing A to tridiagonal form, then
using the MRRR algorithm

the reduction to tridiagonal form dominates the cost

needs to be done via two-sided orthogonalization to preserve
eigenvalues T = QTAQ



Ideal cache model Fast and slow memory

Direct tridiagonalization

We can perform two-sided orthogonalization via Householder QR

compute Householder vector to eliminate n − 2 lower entries of first
column

QT
1 A = (I − 2uuT )A does not affect top row, so we can perform

QT
1 AQ1

applying QT
1 from the left is independent across columns

applying Q1 from the right is independent across rows

this means we need to compute QT
1 AQ1 fully, before we can compute

the Householder vector of the next column

for designing a 2D algorithm, we can keep A in place and broadcast
the vectors, for O(n2/

√
P) communication

but if the matrix blocks do not fit in cache (n2/P ≥ H), we will have
O(n3/P) memory bandwidth cost (no reuse), rather than
O(n3/(P

√
H))



Ideal cache model Fast and slow memory

Full-to-band reduction

We can alleviate the problem by reducing to a banded matrix first

compute rectangular QR of n − b × b lower left minor (submatrix)

QT
1 A = (I − 2uuT )A reduces first b columns to bandwidth 2b and

does not affect top b rows, so we can perform QT
1 AQ1

now we can perform the trailing matrix update by matrix
multiplication with rectangular matrices of dimensions (n − b)× b

Q: what is the minimal b we would want to pick to get
√
H reuse of

trailing matrix entries, and consequently O(n3/(P
√
H)) memory

bandwidth cost?

A: b =
√
H

it then remains to reduce the banded matrix to tridiagonal form,
which can be done via bulge chasing [Lang 1993]



Ideal cache model Fast and slow memory

Symmetric band reduction (bulge chasing)



Ideal cache model Cache lines

Ideal cache model

A more accurate model is to consider a cache line size L in addition to the
cache size H

each memory-to-cache transfer has size L

new unified metric: cache misses (number of cache lines transferred)

the bandwidth cost is the number of cache misses multiplied by L

the (old) latency cost (number of transfers) is disregarded

assume ‘tall’ cache, L ≤
√
H (more convenient, H = Ω(L2))

we can now consider different caching protocols

an ideal cache model corresponds to the assumption that the protocol
always makes the best decision

this ideal cache model is in a sense equivalent to a manually
orchestrated cache protocol

arbitrary manual orchestration can be achieved with an LRU
(lest-recently-used protocol)



Ideal cache model Cache lines

Matrix transposition in the ideal cache model

Matrix multiplication bandwidth cost with a tall cache is not affected by L

if we read square blocks into cache they have dimension Θ(L)

if we compute outer products, just need to transpose B initially

n × n matrix transposition becomes non-trivial

when L = 1 (original model), there is no notion of how a matrix is laid
out in memory
for general L, we should read

√
H ×

√
H blocks into cache, transpose

them, then write them to memory to get linear bandwidth cost O(n2)
matrix transposition is a very useful subroutine when we need to ensure
contiguous access to cache lines



Ideal cache model Cache-oblivious algorithms

Cache obliviousness

Introduced by Frigo, Leiserson, Prokop, Ramachadran (original paper
worth reading)

basic idea: algorithms should not be parameterized by architectural
parameters

good ideas in computer science are most often good abstractions

designing an algorithm obliviously of cache size makes it portable and
efficient for all levels of a cache hierarchy

cache oblivious algorithms are stated without explicit control of data
movement

their communication cost is derived by assuming an ideal cache model

ideal caches can be simulated by an LRU cache protocol for most
(regular) algorithms



Ideal cache model Cache-oblivious algorithms

Cache oblivious matrix transposition

Given m × n matrix A, compute B = AT

if m ≤ n subdivide A = [A1 A2] and B =

[
B1

B2

]
and compute

recursively, B1 = AT
1 , B2 = AT

2

if m > n subdivide A =

[
A1

A2

]
and B = [B1 B2] and compute

recursively, B1 = AT
1 , B2 = AT

2

obtains linear bandwidth cost T (mn) = 2T (mn/2), T (1) = O(1), so
T (mn) = O(mn)



Ideal cache model Cache-oblivious algorithms

Cache oblivious matrix multiplication

Given m×k matrix A and k×n matrix B, compute m×n matrix C = AB

if k ≥ m and k ≥ m subdivide A =
[
A1 A2

]
and B =

[
B1

B2

]
and

compute recursively, C̄ = A1B1, Ĉ = A2B2, then C = C̄ + Ĉ

if n > k and n ≥ m subdivide C =
[
C1 C2

]
and B =

[
B1 B2

]
and

compute recursively, C1 = AB1, C2 = AB2

if m > k and m > n subdivide C =

[
C1

C2

]
and A =

[
A1

A2

]
and compute

recursively, C1 = A1B, C2 = A2B



Administrative interlude

Short pause



Discrete Fourier Transforms Properties

DFT matrix
These notes are based on James Demmel’s book, “Applied Numerical Linear Algebra”

For any n, let ωn = e−2πi/n, so ω
n/2
n = −1 and ωn

n = 1, a DFT matrix of
dimension n is given by

∀j , k ∈ [0, n − 1] Dn(j , k) = ωjk
n

for example

D4 =


1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9





Discrete Fourier Transforms Properties

DFT matrix

The matrix A = 1√
n
Dn is symmetric and unitary A = AT = A∗, AA−1 = I

D−1n has the form D−1n (j , k) = (1/n)ω−jk , now X = DnD
−1
n has the form

X (j , k) = (1/n)
n−1∑
l=0

ωjl
nω
−lk
n = (1/n)

n−1∑
l=0

ω
l(j−k)
n

Clearly X (j , j) = 1, while X (j , j + t) = (1/n)
∑n−1

l=0 (ωt
n)l is a geometric

sum for t 6= 0, so

X (j , j + t) = (1/n)
1− ωnt

1− ωt
= 0 since 1− ωnt = 1− (ωn)t = 1− 1t = 0



Discrete Fourier Transforms Convolution

Convolution

A convolution takes as input vectors a and b and computes vector c

∀k ∈ [0, n − 1] c(k) =
k∑

j=0

a(j)b(k − j)

given coefficients of two polynomials of degree n/2 stored in a and b,
the convolution computes the coefficients c of the product of the two
polynomials

naive evaluation costs O(n2) operations
the convolution can also be interpreted as matrix-vector multiplication
with a triangular Toeplitz matrix

[c(0) c(1) c(2) c(3)] = [a(0) a(1) a(2) a(3)] ·


b(0) b(1) b(2) b(3)

0 b(0) b(1) b(2)
0 0 b(0) b(1)
0 0 0 b(0)





Discrete Fourier Transforms Convolution

Convolution via DFT

We can compute

∀k ∈ [0, n − 1] c(k) =
k∑

j=0

a(j)b(k − j)

via c = D−1n [(Dna)� (Dnb)] where � is an elementwise product

z = v � w → z(i) = v(i) · w(i)

we can find some intuition for this by thinking back to polynomial
multiplication

the DFT Dna evaluates a polynomial f (x) at x = ωj for j ∈ [0, n − 1]

the elementwise product computes the values of the polynomial
product at these points

the inverse DFT D−1n interpolates back from the points to get the
coefficients of the polynomial product



Discrete Fourier Transforms Convolution

Convolution via DFT

The polynomial interpretation is abstract, lets see what happens algebraically

first lets write out the full expression in indexed form

c(k) =
∑
s

D−1
n (k , s)

(∑
j

Dn(s, j)a(j)
)(∑

t

Dn(s, t)b(t)
)

=
∑
s

ω−ks
n

(∑
j

ωsj
n a(j)

)(∑
t

ωst
n b(t)

)
now, lets rearrange the order of the summations to see what happens to
every product of a and b

c(k) =
∑
s

∑
j

∑
t

ω−ks
n ωsj

n ω
st
n a(j)b(t)

=
∑
s

∑
j

∑
t

ω(j+t−k)s
n a(j)b(t)

we can observe that when j + t − k = 0 the products ω
(s+t−j)k
n = 1, so the

terms a(j)b(k − j) survive!

For any u = j + t − k 6= 0, we observe
∑

s(ωu
n)s = 0, as for DnD

−1
n


	Ideal cache model
	Fast and slow memory
	Cache lines
	Cache-oblivious algorithms

	Administrative interlude
	Discrete Fourier Transforms
	Properties
	Convolution


