CS 598: Communication Cost Analysis of Algorithms
Lecture 9: The Ideal Cache Model and the Discrete Fourier Transform

Edgar Solomonik

University of lllinois at Urbana-Champaign

September 21, 2016



Ideal cache model Fast and slow memory

Algorithmic cache management

Consider a computer with unlimited memory and a cache of size H

@ we can design algorithms by manually managing cache transfers
@ simple metrics:
e amount of data moved from memory to cache (bandwidth cost)
e number of synchronous memory-to-cache transfers (latency cost)
o generally, efficient algorithms in this model try to select blocks of
computation that minimize the surface-to-volume ratio
e i.e., do as much computation with the cache-resident data as possible
e in other words, exploit temporal and spatial locality



Ideal cache model Fast and slow memory

Cache-efficient matrix multiplication
Consider multiplication of n x n matrices C=A-B

For i € [1,n/s],j € [1,n/t], k € [1,n/v], define blocks C[i, ], A[i, k],
Blk, j] with dimensions s x t, s X v, and v X t, respectively

for (i = 1 to n/s)
for (j = 1 to n/t)
initialize C[i,j] = @ in cache
for (k = 1 to n/v)
load A[i,k] into cache
load B[k,j]l] into cache
Cl[i,jl = CCi,j] + AL[i,kI*B[k,j]
end
write C[i,j] to memory
end
end

Q: What restriction must we impose to insure A[i, k], Bk, j] and C[i, j] fit
in cache simultaneously?
A:st+sv+vt< H



Memory-bandwidth analysis of matrix multiplication

So we have the constraint, st +sv + vt < H

there are a total of (n/s)(n/t)(n/v) inner loop iterations

Q: what is the asymptotic memory latency cost of the algorithm

A: the number of inner loop iterations, n/(stv)

since each block of C stays resident in the innermost loop, we write

each element of C to memory only once

@ we read each block s x v block of A and v x t block of B in each
innermost loop

@ Q: how many times do we read each element of A and B?

e A: n/t and n/s, respectively

o therefore, the bandwidth cost is
Q=n*+(n/s+n/t)n® =n?>+n3/s+n3/t

o if we pick s =t = v = /H/3, we satisfy the constraint and obtain
Q ~ 2n%/\/H/3, with n3/H3? memory latency cost

o if we pick s=t=1+vH—2vH and v =1, we obtain Q ~ 2n3/\/ﬁ

with n3/H memory latency cost



Memory-bandwidth cost of LU decomposition

For most dense linear algebra problems, achieving good bandwidth cost is
strictly easier in the sequential case than in the parallel case

@ example: non-pivoted LU factorization

@ we can use the same recursive algorithm, two recursive calls, O(1)
matrix multiplications

o T(n,H)=2T(n/2) + O(v - n®/v/H) where v is inverse of memory
bandwidth

@ cost decreases geometrically by factor of 4 with each level, we can
stop at base case dimension nyg = v/ H and compute LU sequentially

@ memory latency cost is just O(n3/H3/? . 1), same as matrix
multiplication

@ Q: given memory bandwidth cost O(n®/v/H - v), why is it not
possible to have less than a ©(n3/H3/?) memory latency cost?

@ A: we cannot transfer messages larger than the cache size H



Ideal cache model Fast and slow memory

Memory-bandwidth cost of eigenvalue decompositions

The symmetric matrix eigenvalue problem (nearly same as nonsymmtric
SVD) provides a nice example of where memory-bandwidth requires extra
consideration with respect to distributed memory bandwidth cost

@ probably the last dense numerical linear algebra problem we study in
this course

@ given a symmetric matrix A, we would like to compute its eigenvalues

@ stable algorithms work by first reducing A to tridiagonal form, then
using the MRRR algorithm

@ the reduction to tridiagonal form dominates the cost

@ needs to be done via two-sided orthogonalization to preserve
eigenvalues T = QTAQ



Ideal cache model Fast and slow memory

Direct tridiagonalization

We can perform two-sided orthogonalization via Householder QR

@ compute Householder vector to eliminate n — 2 lower entries of first
column

o QA= (I—2uu")A does not affect top row, so we can perform
Q AQ

@ applying QlT from the left is independent across columns

@ applying @, from the right is independent across rows

@ this means we need to compute QlTAQl fully, before we can compute
the Householder vector of the next column

o for designing a 2D algorithm, we can keep A in place and broadcast
the vectors, for O(n?/+/P) communication

e but if the matrix blocks do not fit in cache (n?/P > H), we will have
O(n3/P) memory bandwidth cost (no reuse), rather than

O(n*/(Pv/H))



Ideal cache model Fast and slow memory

Full-to-band reduction

We can alleviate the problem by reducing to a banded matrix first
e compute rectangular QR of n — b x b lower left minor (submatrix)

o @/ A= (I —2uu")A reduces first b columns to bandwidth 2b and
does not affect top b rows, so we can perform Q; AQ;

@ now we can perform the trailing matrix update by matrix
multiplication with rectangular matrices of dimensions (n — b) x b

@ Q: what is the minimal b we would want to pick to get V/H reuse of
trailing matrix entries, and consequently O(n®/(P+v/H)) memory
bandwidth cost?

e A: b=+VH

@ it then remains to reduce the banded matrix to tridiagonal form,
which can be done via bulge chasing [Lang 1993]



Ideal cache model Fast and slow memory

Symmetric band reduction (bulge chasing)




Ideal cache model Cache lines

Ideal cache model

A more accurate model is to consider a cache line size L in addition to the
cache size H

@ each memory-to-cache transfer has size L

new unified metric: cache misses (number of cache lines transferred)
the bandwidth cost is the number of cache misses multiplied by L
the (old) latency cost (number of transfers) is disregarded

assume ‘tall’ cache, L < /H (more convenient, H = Q(L?))

we can now consider different caching protocols

an ideal cache model corresponds to the assumption that the protocol
always makes the best decision

@ this ideal cache model is in a sense equivalent to a manually
orchestrated cache protocol

@ arbitrary manual orchestration can be achieved with an LRU
(lest-recently-used protocol)



Matrix transposition in the ideal cache model

Matrix multiplication bandwidth cost with a tall cache is not affected by L
o if we read square blocks into cache they have dimension ©(L)

o if we compute outer products, just need to transpose B initially
@ n X n matrix transposition becomes non-trivial
e when L =1 (original model), there is no notion of how a matrix is laid
out in memory
o for general L, we should read v'H x v/H blocks into cache, transpose
them, then write them to memory to get linear bandwidth cost O(n?)
e matrix transposition is a very useful subroutine when we need to ensure
contiguous access to cache lines



Ideal cache model Cache-oblivious algorithms

Cache obliviousness

Introduced by Frigo, Leiserson, Prokop, Ramachadran (original paper
worth reading)

@ basic idea: algorithms should not be parameterized by architectural
parameters

@ good ideas in computer science are most often good abstractions

@ designing an algorithm obliviously of cache size makes it portable and
efficient for all levels of a cache hierarchy

@ cache oblivious algorithms are stated without explicit control of data
movement

@ their communication cost is derived by assuming an ideal cache model

@ ideal caches can be simulated by an LRU cache protocol for most
(regular) algorithms



Ideal cache model Cache-oblivious algorithms

Cache oblivious matrix transposition

Given m x n matrix A, compute B = AT

e if m < nsubdivide A = [A; Ay] and B = [gl] and compute
p)

recursively, By = AlT, B, = A2T

e if m > n subdivide A = [ﬁl} and B = [B; B»| and compute
2
recursively, By = AZ—, B, = A;—

obtains linear bandwidth cost T(mn) =2T(mn/2), T(1) = O(1), so
T(mn) = O(mn)



Ideal cache model Cache-oblivious algorithms

Cache oblivious matrix multiplication

Given m x k matrix A and k x n matrix B, compute m x n matrix C = AB
@ if k> m and k > m subdivide A = [Al Az] and B = {gl] and
2

compute recursively, C=AB;, C= AsBs, then C = C + C
@ if n > k and n > m subdivide C = [Cl Cg] and B = [Bl Bg] and
compute recursively, GG = AB;, G = ABy

G

@ if m> k and m > n subdivide C = [C
2

recursively, C; = A1B, G = AxB

] and A = [Al] and compute
Ao



Short pause



DFT matrix

These notes are based on James Demmel’s book, “Applied Numerical Linear Algebra”

For any n, let w, = e=2mi/n o w,','/2 = —1and w) =1, a DFT matrix of
dimension n is given by

Vj,k €[0,n—1] Dy(j, k) = wi¥

for example
1 1 1 1
1 w w? W8
Da = 1 w? w* Wb
1 w3 Wb W0



Discrete Fourier Transforms Properties

DFT matrix

The matrix A = %Dn is symmetric and unitary A= AT = A*, AA™!l = |
D1 has the form D;1(j, k) = (1/n)w ™%, now X = D,D; ! has the form

n—1
X(j, k) = (1/n) an’w;’k (1/n) > i
=0

Clearly X(j,j) = 1, while X(j,j + t) = (1/n) 3215 (wt)' is a geometric
sum for t # 0, so

nt

XGoj+1) = (1/n) 3

— =0 since 1-w"=1-(0")=1-1"=0



Discrete Fourier Transforms Convolution

Convolution

A convolution takes as input vectors a and b and computes vector ¢

k

Vke[o,n—1] c(k) = a(j)b(k —j)

Jj=0

e given coefficients of two polynomials of degree n/2 stored in a and b,
the convolution computes the coefficients ¢ of the product of the two
polynomials

@ naive evaluation costs O(n?) operations

@ the convolution can also be interpreted as matrix-vector multiplication
with a triangular Toeplitz matrix

b(0) b(1) b(2) b(3)
[c(0) (1) ¢(2) ¢(3)] = [a(0) a(1) a(2) a(3)] - 8 b%O) 258 Z%
0 0 0 b(0)



Convolution via DFT

We can compute

M-

Vke[0,n—1] (k)= a(j)b(k — )

j=0
via ¢ = D;}[(Dpa) ® (D,b)] where ® is an elementwise product

z=vow—z(i)=v(i) w(i)

@ we can find some intuition for this by thinking back to polynomial
multiplication

o the DFT D,a evaluates a polynomial f(x) at x =« for j € [0,n — 1]

@ the elementwise product computes the values of the polynomial
product at these points

o the inverse DFT D; ! interpolates back from the points to get the
coefficients of the polynomial product



Convolution via DFT

The polynomial interpretation is abstract, lets see what happens algebraically

@ first lets write out the full expression in indexed form

ZD kS(ZD(SJ )(ZD (s,t)b )
- gwn“(;wﬁam) (;w:fb(r))

@ now, lets rearrange the order of the summations to see what happens to
every product of a and b

= 303w wdertali)b()
S D BB L EIIE

@ we can observe that when j 4+t — k = 0 the products wp
terms a(j)b(k — j) survive!

@ Forany u=j+t—k#0, we observe > _(w!)* =0, as for D,D,!

(sHt=)k _ 1 5o the



	Ideal cache model
	Fast and slow memory
	Cache lines
	Cache-oblivious algorithms

	Administrative interlude
	Discrete Fourier Transforms
	Properties
	Convolution


