
Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Reducing communication in dense matrix/tensor
computations

Edgar Solomonik

UC Berkeley

Aug 11th, 2011

Edgar Solomonik Communication-avoiding contractions 1/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Outline

Topology-aware collectives
Rectangular collectives
Multicasts
Reductions

2.5D algorithms
2.5D matrix multiplication
2.5D LU factorization

Tensor contractions
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Conclusions and future work

Edgar Solomonik Communication-avoiding contractions 2/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Performance of multicast (BG/P vs Cray)

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
an

dw
id

th
 (M

B
/s

ec
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Edgar Solomonik Communication-avoiding contractions 3/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Why the performance discrepancy in multicasts?

I Cray machines use binomial multicasts
I Form spanning tree from a list of nodes
I Route copies of message down each branch
I Network contention degrades utilization on a 3D torus

I BG/P uses rectangular multicasts
I Require network topology to be a k-ary n-cube
I Form 2n edge-disjoint spanning trees

I Route in different dimensional order
I Use both directions of bidirectional network

Edgar Solomonik Communication-avoiding contractions 4/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

2D rectangular multicasts trees

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined

Edgar Solomonik Communication-avoiding contractions 5/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

A model for rectangular multicasts

tmcast = m/Bn + 2(d + 1) · o + 3L + d · P1/d · (2o + L)

Our multicast model consists of 3 terms

1. m/Bn, the bandwidth cost incurred at the root

2. 2(d + 1) · o + 3L, the start-up overhead of setting up the
multicasts in all dimensions

3. d · P1/d · (2o + L), the path overhead reflects the time for a
packet to get from the root to the farthest destination node

Edgar Solomonik Communication-avoiding contractions 6/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

A model for binomial multicasts

tbnm = log2(P) · (m/Bn + 2o + L)

I The root of the binomial tree sends the entire message
log2(P) times

I The setup overhead is overlapped with the path overhead

I We assume no contention

Edgar Solomonik Communication-avoiding contractions 7/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Model verification: one dimension

 200

 400

 600

 800

 1000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on a ring of 8 nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

Edgar Solomonik Communication-avoiding contractions 8/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Model verification: two dimensions

 0

 500

 1000

 1500

 2000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on 64 (8x8) nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

Edgar Solomonik Communication-avoiding contractions 9/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Model verification: three dimensions

 0

 500

 1000

 1500

 2000

 2500

 3000

1 8 64 512 4096 32768 262144

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

DCMF Broadcast on 512 (8x8x8) nodes of BG/P

trect model
Faraj et al data

DCMF rectangle dput
tbnm model

DCMF binomial

Edgar Solomonik Communication-avoiding contractions 10/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

A model for rectangular reductions

tred = max[m/(8γ), 3m/β,m/Bn]+2(d+1)·o+3L+d ·P1/d ·(2o+L)

I Any multicast tree can be inverted to produce a reduction tree
I The reduction operator must be applied at each node

I each node operates on 2m data
I both the memory bandwidth and computation cost can be

overlapped

Edgar Solomonik Communication-avoiding contractions 11/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Rectangular reduction performance on BG/P

 50

 100

 150

 200

 250

 300

 350

 400

8 64 512

B
an

dw
id

th
 (M

B
/s

ec
)

#nodes

DCMF Reduce peak bandwidth (largest message size)

torus rectangle ring
torus binomial

torus rectangle
torus short binomial

BG/P rectangular reduction performs significantly worse than
multicast

Edgar Solomonik Communication-avoiding contractions 12/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Performance of custom line reduction

 100

 200

 300

 400

 500

 600

 700

 800

512 4096 32768

B
an

dw
id

th
 (M

B
/s

ec
)

msg size (KB)

Performance of custom Reduce/Multicast on 8 nodes

MPI Broadcast
Custom Ring Multicast

Custom Ring Reduce 2
Custom Ring Reduce 1

MPI Reduce

Edgar Solomonik Communication-avoiding contractions 13/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Rectangular collectives
Multicasts
Reductions

Another look at that first plot

Just how much better are
rectangular algorithms on
P = 4096 nodes?

I Binomial collectives on XE6
I 1/30th of link

bandwidth

I Rectangular collectives on
BG/P

I 4.3X the link bandwidth

I Over 120X improvement
in efficiency!

How can we apply this?

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
an

dw
id

th
 (M

B
/s

ec
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Edgar Solomonik Communication-avoiding contractions 14/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D Cannon-style matrix multiplication
0

1

2

3

0 21 3

1

2

3

0

2 03 1

0

1

21 2 0

0

10 1
0

0

2

32 3
0

10 1
0

0

2
2

+

2
2

3
3

0
0

1
1

+
3D (P=64, c=4)

2.5D (P=32, c=2)

2D (P=16, c=1)

B₀₁

B₁₁

B₂₁

B₃₁

A₂₁A₂₀ A₂₂ A₂₃
=

Edgar Solomonik Communication-avoiding contractions 15/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

Classification of parallel dense matrix algorithms

algs c memory (M) words (W) messages (S)

2D 1 O(n2/P) O(n2/
√
P) O(

√
P)

2.5D [1,P1/3] O(cn2/P) O(n2/
√
cP) O(

√
P/c3)

3D P1/3 O(n2/P2/3) O(n2/P2/3) O(log(P))

NEW: 2.5D algorithms generalize 2D and 3D algrotihms

Edgar Solomonik Communication-avoiding contractions 16/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

Minimize communication with

I minimal memory (2D)

I with as much memory as available (2.5D) - flexible

I with as much memory as the algorithm can exploit (3D)

Match the network topology of

I a
√
P-by-

√
P grid (2D)

I a
√

P/c-by-
√
P/c-by-c grid, most cuboids (2.5D) - flexible

I a P1/3-by-P1/3-by-P1/3 cube (3D)

Edgar Solomonik Communication-avoiding contractions 17/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D SUMMA-style matrix multiplication

Matrix mapping to 3D partition of BG/P

Edgar Solomonik Communication-avoiding contractions 18/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D MM strong scaling

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2.5D Cannon

2D MM (Cannon)
ScaLAPACK PDGEMM

Edgar Solomonik Communication-avoiding contractions 19/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D MM on 65,536 cores

 0

 20

 40

 60

 80

 100

8192 32768 131072

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

n

2.5D MM on 16,384 nodes of BG/P

2D SUMMA
2D Cannon

2.5D Cannon
2.5D SUMMA

Edgar Solomonik Communication-avoiding contractions 20/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

Cost breakdown of MM on 65,536 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=32768, 2D

n=32768, 2.5D

n=131072, 2D

n=131072, 2.5D

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 b
y

2D

SUMMA (2D vs 2.5D) on 16,384 nodes of BG/P

computation
idle

communication

Edgar Solomonik Communication-avoiding contractions 21/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

A new latency lower bound for LU

Reduce latency to O(
√
P/c3) for

LU?
I For block size n/d LU does

I Ω(n3/d2) flops
I Ω(n2/d) words
I Ω(d) msgs

I Now pick d (=latency cost)
I d = Ω(

√
P) to minimize

flops
I d = Ω(

√
c · P) to

minimize words

No dice. But lets minimize
bandwidth.

k₁

k₀

k₂

k₃

k₄

k

A₀₀

A₂₂

A₃₃

A₄₄

A

n

n

critical path

d-1,d-1d-1

A₁₁

Edgar Solomonik Communication-avoiding contractions 22/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D LU factorization without pivoting

2. Perform TRSMs to compute
a panel of L and a panel of U.

1. Factorize A₀₀ and
communicate L₀₀ and U₀₀
among layers.

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

3. Broadcast blocks so all
layers own the panels
of L and U.

(A)

(B)

4.Broadcast different
subpanels within each
layer.

5.Multiply subpanels
on each layer.

6.Reduce (sum) the
next panels.*

U

L

7. Broadcast the panels and
continue factorizing the Schur's
complement...

* All layers always need to contribute to reduction
even if iteration done with subset of layers.

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik Communication-avoiding contractions 23/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

3. Pivot rows in first big block column
on each layer.

2. Reduce to find best pivot rows.

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

8. Perform TRSMs
 to compute panel of U

L₃₀

L₁₀
L₂₀

1. Factorize each block
in the first column with pivoting.

4. Apply TRSMs to
compute first column of L
and the first block of a row of U.

5. Update corresponding
interior blocks S=A-L *U₀₁.

6. Recurse to compute the rest
of the first big block column of L.

9. Update the rest
of the matrix as
before and recurse
on next block panel...

7. Pivot rows in the rest
of the matrix on each
layer.

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

k0

PA₀

Edgar Solomonik Communication-avoiding contractions 24/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D LU strong scaling

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D LU with on BG/P (n=65,536)

2.5D LU (no-pvt)
2.5D LU (CA-pvt)

2D LU (no-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

Edgar Solomonik Communication-avoiding contractions 25/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

2.5D matrix multiplication
2.5D LU factorization

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

2D no-pvt

2.5D no-pvt bnm

2.5D no-pvt rect

2D CA-pvt

2.5D CA-pvt

Ti
m

e
(s

ec
)

2.5D LU vs 2D LU on 16,384 nodes of BG/P (n=131,072)

compute
idle

communication

Edgar Solomonik Communication-avoiding contractions 26/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Bridging dense linear algebra techniques and applications

Target application: tensor contractions in electronic structure
calculations (quantum chemistry)

I Often memory constrained

I Most target tensors are oddly shaped

I Need support for high dimensional tensors

I Need handling of partial/full tensor symmetries

I Would like to use communication avoiding ideas (blocking,
2.5D, topology-awareness)

Edgar Solomonik Communication-avoiding contractions 27/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Decoupling memory usage and topology-awareness

I 2.5D algorithms couple memory usage and virtual topology
I c copies of a matrix implies c processor layers

I Instead, we can nest 2D and/or 2.5D algorithms

I Higher-dimensional algorithms allow smarter topology aware
mapping

Edgar Solomonik Communication-avoiding contractions 28/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Higher-dimensional distributed MM

I 2.5D algorithms couple memory usage and virtual topology
I c copies of a matrix implies c processor layers

I Instead, we can nest 2D and/or 2.5D algorithms

I Higher-dimensional algorithms allow smarter topology aware
mapping

Edgar Solomonik Communication-avoiding contractions 29/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

4D SUMMA-Cannon
How do we map to a 3D partition
without using more memory

I SUMMA (bcast-based) on
2D layers

I Cannon (send-based) along
third dimension

I Cannon calls SUMMA as
sub-routine

I Minimize inefficient
(non-rectangular)
communication

I Allow better overlap

I Treats MM as a 4D tensor
contraction

 0

 20

 40

 60

 80

 100

4096 8192 16384 32768 65536 131072

P
er

ce
nt

ag
e

of
 fl

op
s

pe
ak

matrix dimension

MM on 512 nodes of BG/P

2.5D MM
4D MM

2D MM (Cannon)
PBLAS MM

Edgar Solomonik Communication-avoiding contractions 30/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Symmetry is a problem
I A fully symmetric tensor of dimenson d requires only nd/d!

storage
I Symmetry significantly complicates sequential implementation

I Irregular indexing makes alignment and unrolling difficult
I Generalizing over all partial-symmetries is expensive

I Blocked or block-cyclic virtual processor decmpositions give
irregular or imbalanced virtual grids

Blocked Block-cyclic

P0 P1

P2 P3

Edgar Solomonik Communication-avoiding contractions 31/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Solving the symmetry problem
I A cyclic decomposition allows balanced and regular blocking

of symmetric tensors
I If the cyclic-phase is the same in each symmetric dimension,

each sub-tensor retains the symmetry of the whole tensor

Cyclic

Edgar Solomonik Communication-avoiding contractions 32/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

A generalized cyclic layout is still challenging

I In order to retain partial symmetry, all symmetric dimensions
of a tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I And yet the virtual mapping, needs to be mapped to a
physical topology, which can be any shape

Edgar Solomonik Communication-avoiding contractions 33/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be ’stretchable’

Edgar Solomonik Communication-avoiding contractions 34/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Constructing a virtual processor grid for MM

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C

Edgar Solomonik Communication-avoiding contractions 35/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Unfolding the processor grid

I Higher-dimensional fully-symmetric tensors can be mapped
onto a lower-dimensional processor grid via creation of new
virtual dimensions

I Lower-dimensional tensors can be mapped onto a
higher-dimensional processor grid via by unfolding (serializing)
pairs of processor dimensions

I However, when possible, replication is better than unfolding,
since unfolded processor grids can lead to an unbalanced
mapping

Edgar Solomonik Communication-avoiding contractions 36/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

A basic parallel algorithm for symmetric tensor contractions

1. Arrange processor grid in any k-ary n-cube shape

2. Map (via unfold & virt) both A and B cyclically along the
dimensions being contracted

3. Map (via unfold & virt) the remaining dimensions of A and B
cyclically

4. For each tensor dimension contracted over, recursively
mulitply the tensors along the mapping

I Each contraction dimension is represented with a nested call to
a local multiply or a parallel algorithm (e.g. Cannon)

Edgar Solomonik Communication-avoiding contractions 37/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Tensor library structure

The library supports arbitrary-dimensional parallel tensor
contractions with any symmetries on n-cuboid processor torus
partitions

1. Load tensor data by (global rank, value) pairs

2. Once a contraction is defined, map participating tensors

3. Distribute or reshuffle tensor data/pairs

4. Construct contraction algorithm with recursive function/args
pointers

5. Contract the sub-tensors with a user-defined sequential
contract function

6. Output (global rank, value) pairs on request

Edgar Solomonik Communication-avoiding contractions 38/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Current tensor library status

I Dense and symmetric remapping/repadding/contractions
implemented

I Currently functional only for dense tensors, but with full
symmetric logic

I Can perform automatic mapping with physical and virtual
dimensions, but cannot unfold processor dimensions yet

I Complete library interface implemented, including basic
auxillary functions (e.g. map/reduce, sum, etc.)

Edgar Solomonik Communication-avoiding contractions 39/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Next implementation steps

I Currently integrating library with a SCF method code that
uses dense contractions

I Get symmetric redistribution working correctly

I Automatic unfolding of processor dimensions

I Implement mapping by replication to enable 2.5D algorithms

I Much basic performance debugging/optimization left to do

I More optimization needed for sequential symmetric
contractions

Edgar Solomonik Communication-avoiding contractions 40/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Very preliminary contraction library results

Contracts tensors of size 64x64x256x256 in 1 second on 2K nodes

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

Strong scaling of dense contraction on BG/P 64x64x256x256

no rephase
rephase every contraction

repad every contraction

Edgar Solomonik Communication-avoiding contractions 41/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Algorithms for distributed tensor contractions
A tensor contraction library implementation

Potential benefit of unfolding
Unfolding smallest two BG/P torus dimensions improves
performance.

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e

of
 m

ac
hi

ne
 p

ea
k

#nodes

Strong scaling of dense contraction on BG/P 64x64x256x256

no-rephase 2D
no-rephase 3D

Edgar Solomonik Communication-avoiding contractions 42/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Conntributions

I Models for rectangular collectives

I 2.5D algorithms theory and implementation

I Using a cyclic mapping to parallelize symmetric tensor
contractions

I Extending and tuning processor grid with virtual dimensions

I Automatic mapping of high-dimensional tensors to
topology-aware physical partitions

I A parallel tensor contraction algorithm/library without a
global address space

Edgar Solomonik Communication-avoiding contractions 43/ 44

Topology-aware collectives
2.5D algorithms

Tensor contractions
Conclusions and future work

Conclusions and references

I Parallel tensor contraction algorithm and library seem to be
the first communication-efficient practical approach

I Preliminary results and theory indicate high potential of this
tensor contraction library

I papers
I (2.5D) to appear in Euro-Par 2011, Distinguished paper
I (2.5D + rectangular collective models) to appear in

Supercomputing 2011

Edgar Solomonik Communication-avoiding contractions 44/ 44

Backup slides

Edgar Solomonik Communication-avoiding contractions 45/ 44

A new LU latency lower bound

k₁

k₀

k₂

k₃

k₄

k

A₀₀

A₂₂

A₃₃

A₄₄

A

n

n

critical path

d-1,d-1d-1

A₁₁

flops lower bound requires d = Ω(
√
p) blocks/messages

bandwidth lower bound required d = Ω(
√
cp) blocks/messages

Edgar Solomonik Communication-avoiding contractions 46/ 44

Virtual topology of 2.5D algorithms

(p/c)-1

i

j

k

0

0
0

(p/c) -1
1/2

1/2

c-1

2D algorithm mapping:
(√

P
)
×
(√

P
)

grid

2.5D algorithm mapping:
(√

P/c
)
×
(√

P/c
)
× c grid for any c

Edgar Solomonik Communication-avoiding contractions 47/ 44

	Topology-aware collectives
	Rectangular collectives
	Multicasts
	Reductions

	2.5D algorithms
	2.5D matrix multiplication
	2.5D LU factorization

	Tensor contractions
	Algorithms for distributed tensor contractions
	A tensor contraction library implementation

	Conclusions and future work
	Appendix

