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Tensors

A tensor is a collection of elements

its dimensions define the size of the collection

its order is the number of different dimensions

specifying an index along each tensor mode
defines an element of the tensor

A few examples of tensors are

Order 0 tensors are scalars, e.g., s ∈ R
Order 1 tensors are vectors, e.g., v ∈ Rn

Order 2 tensors are matrices, e.g., A ∈ Rm×n

An order 3 tensor with dimensions s1 × s2 × s3 is denoted as
TTT ∈ Rs1×s2×s3 with elements tijk for
i ∈ {1, . . . , s1}, j ∈ {1, . . . , s2}, k ∈ {1, . . . , s3}
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Tensor Contractions

A tensor contraction describes a set of products and sums of elements
from two tensors

tensor contraction formula
inner product w =

∑
i uivi

outer product wij = uivij
pointwise product wi = uivi

Hadamard product wij = uijvij
matrix multiplication wij =

∑
k uikvkj

batched mat.-mul. wijl =
∑
k uiklvkjl

tensor times matrix wilk =
∑
j uijkvlj

Tensor contractions are prevalent in quantum chemistry methods
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General Tensor Contractions

Given tensor UUU of order s+ v and VVV of order v + t, a tensor contraction
summing over v modes can be written as

wi1...isj1...jt =
∑

k1...kv

ui1...isk1...kvvk1...kvj1...jt

Other contractions can be mapped to this form after transposition

Unfolding tensors reduces the tensor contraction to matrix multiplication

Combine consecutive indices in appropriate groups of size s, t, and v

If all tensor modes are of dimension n, obtain matrix–matrix product
C = AB where C ∈ Rns×nt

, A ∈ Rns×nv
, and B ∈ Rnv×nt

Assuming classical matrix multiplication, contraction requires ns+t+v

elementwise products and ns+t+v − ns+t additions
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Library for Massively-Parallel Tensor Contractions

Cyclops Tensor Framework1: sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem, CC4S)2, quantum circuit simulation (by
IBM/LLNL)3, and graph analysis (betweenness centrality4, minimum
spanning tree5)

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and CUDA

1https://github.com/cyclops-community/ctf
2

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3

E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E.S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4

E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
5

T. Baer, R. Kanakagiri, E.S., SIAM PP 2022
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Recent and Ongoing Cyclops Developments

All-at-once contraction for sparse tensor times many dense tensors

Working on integration with linear (least-squares) solves

Driven by tensor completion and quasi-robust density fitting1

Performance models based on tensor completion

Given execution times T (m,n, k) for (m,n, k) ∈ Ω, predict T (m,n, k)
for any other (m,n, k)

Higher accuracy than prior art (extra trees, sparse grid regression)
1

D.P. Tew, The Journal of Chemical Physics 2018
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Group Symmetry

Abelian group symmetries can be mapped to the cyclic group, which
can be used to define a block-sparse form of the tensors (here
represented using extra modes), e.g.,

waA,bB,iI,jJ =
∑

k,K,l,L

uaA,bB,kK,lLvkK,lL,iI,jJ

where for some group size G, we have symmetries, e.g.,

waA,bB,iI,jJ 6= 0 if A+B − I − J ≡ 0 (mod G)

uaA,bB,kK,lL 6= 0 if A+B +K + L ≡ 0 (mod G)

vkK,lL,iI,jJ 6= 0 if K + L− I − J ≡ 0 (mod G)

We can write each of these tensors using a reduced form and a
Kronecker delta tensor,

waA,bB,iI,jJ = r
(W )
aA,bB,iI,jδ

(W )
ABIJ

where δ
(W )
ABIJ = 1 if A+B − I − J ≡ 0 (mod G) and δ

(W )
ABIJ = 0

otherwise
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Block Contraction Approach to Group Symmetry

Such symmetries are often handled by indirect indexing in nested loops

However, transformations of tensors are also possible to reduce such
contractions to a “direct product”, which has previously been done for
group symmetric tensor contractions in quantum chemistry1,2

1
J.F. Stanton, J. Gauss, J.D. Watts, and R.J. Bartlett, The Journal of Chemical Physics 1991

2
D. Matthews, Molecular Physics 2019

LPNA Tensor Computations in Quantum Chemistry June 8th, 2022 8 / 23



Group Symmetry in Tensor Contractions

New contraction algorithm, irreducible representation alignment uses new reduced
form to handle group symmetry (momentum conservation, spin, quantum
numbers, etc.) without looping over blocks or sparsity1

wABIJ =
∑
KL

r̄
(U)
ABK δ

(U)
ABKLδ

(V )
KLIJ︸ ︷︷ ︸∑

Q δ
(1)
ABQδ

(2)
IJQδ

(3)
KLQ

r̄
(V )
KIJ =

∑
Q

δ
(1)
ABQδ

(3)
IJQ

∑
K

r
(U)
AKQr

(V )
KIQ︸ ︷︷ ︸

r
(W )
AIQ

1
Y. Gao, P. Helms, G. Chan, and E.S., arXiv:2007.08056
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Automation of Group Symmetric Contractions

CC 1a

CC 2a

CC 3a

CC 1b

CC 2b

CC 3b

M
M
a

M
M
b

M
PS a

M
PS b

PEPS a

PEPS b

1/16

1

16

256

T
im

e
(s

)

Loop Blocks (1 Proc, NumPy)
Symtensor (1 Proc, BLAS)
Symtensor (1 Proc, CTF)
Loop Blocks (64 Proc, NumPy)
Symtensor (64 Proc, BLAS)
Symtensor (64 Proc, CTF)

Group symmetric tensors represented programmatically by

a dense reduced tensor (containing unique data)
an implicit sparse tensor (Kronecker delta tensor) describing the group
symmetry

At contraction time reduced form are aligned by contraction with
Kronecker delta tensor (Q index is introduced)

Users can write symmetry-oblivious code
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CP Decomposition

For a tensor TTT ∈ Rn×n×n, the CP decomposition1,2 is defined by
matrices U , V , and W such that

tijk =

R∑
r=1

uirvjrwkr

1
F.L. Hitchcock, Studies in Applied Mathematices 1927

2
T. Kolda and B. Bader, SIAM Review 2009
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CP Decomposition for Tensor Hypercontraction

The cost of CCSD can be reduced to O(n5) by density fitting, which
is a truncated Cholesky decomposition of the ERI tensor

(ab|ij) =
∑
p

dabpd
∗
ijp

The tensor hypercontraction method factorizes the density fitting
tensor as

dijp =
∑
r

xirxjrypr

which is a canonical polyadic (CP) decomposition with a repeating
factor matrix X

When this factorization is also applied to the amplitude tensor, CCSD
scaling can be theoretically further reduced to O(n4)
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Tucker Decomposition

The Tucker decomposition1 expresses an order d tensor via a smaller
order d core tensor and d factor matrices

For a tensor TTT ∈ Rn×n×n, the Tucker decomposition is defined by core
tensor ZZZ ∈ RR1×R2×R3 and factor matrices U , V , and W with
orthonormal columns, such that

tijk =

R1∑
p=1

R2∑
q=1

R3∑
r=1

zpqruipvjqwkr

If an exact Tucker decomposition exists, it can be computed via SVD
(HoSVD)
HOOI method optimizes in an alternating manner among (U ,ZZZ),
(V ,ZZZ), (W ,ZZZ)

1
T. Kolda and B. Bader, SIAM Review 2009
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Recent Work on Tensor Decompositions

Our group has a number of recent developments in algorithms and parallel
software for tensor decomposition optimization algorithms

Navjot Singh, Linjian Ma, Hongru Yang, and ES. Comparison of
accuracy and scalability of Gauss-Newton and alternating least
squares for CP decomposition, arXiv:1910.12331 (SISC 2021).

Linjian Ma and ES. Accelerating alternating least squares for tensor
decomposition by pairwise perturbation, arXiv:1811.10573 (NLAA
2022).

Linjian Ma and ES. Efficient parallel CP decomposition with pairwise
perturbation and multi-sweep dimension tree, arXiv:2010.12056
(IPDPS 2021).

Linjian Ma and ES. Fast and accurate randomized algorithms for
low-rank tensor decompositions, arxiv.org:2104.0110 (NeurIPS 2021).
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A Distance Metric for Well-Conditioned CP Decomposition

CP decomposition algorithms usually minimize the Frobenius norm

‖TTT − [[A,B,C]]‖2F = ‖ vec(TTT )− vec([[A,B,C]])‖22

=
∑
i,j,k

(
tijk −

R∑
r=1

airbjrckr
)2

Ardavan Afshar et al [AAAI 2021] minimize Wasserstein distance,
improving robustness for downstream tasks

We consider Mahalanobis distance based on covariance matrices1

‖ vec(TTT )− vec([[A,B,C]])‖2M−1 = rTM−1r

where r = vec(TTT )− vec([[A,B,C]])

and M = AAT ⊗BBT ⊗CCT

+(I −AA+)⊗ (I −BB+)⊗ (I −CC+)

1Navjot Singh and E.S., Alternating Mahalanobis Distance Minimization for Stable
and Accurate CP Decomposition, arXiv:2204.07208
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Alternating Mahalanobis Distance Minimization (AMDM)

Optimizing the new metric

min
A,B,C

‖ vec(TTT )− vec([[A,B,C]])‖2M−1

in an alternating manner yields ALS-like updates

A = T(1)(C
+T �B+T )

where M+ denotes the pseudoinverse of matrix M

By comparison, the ALS algorithm computes

A = T(1)(C �B)+T

Both C+T �B+T and (C �B)+T are left inverses of C �B,
suitable for minimizing

min
A
‖(C �B)AT − T T

(1)‖
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Convergence to Exact Decomposition

When seeking an exact decomposition for a rank R ≤ s tensor

ALS achieves a linear convergence rate1

High-order convergence possible by optimizing all variables via
Gauss-Newton,2,3,4 but is costly per iteration relative to ALS

AMDM achieves at least quartic order local convergence per sweep of
alternating updates

error from true solution after solving for one factor scales with product
of errors of other factors

cost per iteration is roughly the same as ALS (dominated by single
matricized tensor times Khatri-Rao product (MTTKRP))

1A. Uschmajew, SIMAX 2012.
2P. Paatero, Chemometrics and Intelligent Laboratory Systems 1997.
3A.H. Phan, P. Tichavsky, A. Cichocki, SIMAX 2013.
4N. Singh, L. Ma, H. Yang, E.S., SISC 2021.
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Exact Decomposition Experimental Performance
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AMDM achieves high-order convergence for exact decomposition of
synthetic random low-rank problems
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Properties of Fixed Points of AMDM

When rank(TTT ) > R, consider an AMDM fixed point, A,B,C

X = A+T , Y = B+T , Z = C+T yield a critical point of

f(X,Y ,Z) = 〈TTT , [[X,Y ,Z]]〉
− log(det(XTXY TY ZTZ))

and satisfy tensor-eigenvector-like equations:

A = X+T = T(1)(Z � Y )

B = Y +T = T(2)(Z �X)

C = Z+T = T(3)(Y �X)

The reconstructed tensor T̃TT = [[A,B,C]] exactly represents the
action of the original tensor on vectors in the support of the factors

T(1)u = T̃(1)u, ∀u ∈ span(C �B)

T(2)v = T̃(2)v, ∀v ∈ span(C �A)

T(3)w = T̃(3)w, ∀w ∈ span(B �A)
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Approximate Decomposition Results with AMDM
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AMDM finds decomposition with lower CP condition number1

Hybrid version gradually transitions from basic AMDM to ALS

1P. Breiding and N. Vannieuwenhoven, SIMAX 2018.
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AMDM for Quantum Chemistry Tensors
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AMDM can also be applied when CP rank exceeds tensor dimension

Hybrid version is effective in initial experiments on density fitting
intermediate tensors (for tensor hypercontraction construction)
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