Communication-avoiding parallel algorithms 1/ 48

Communication-avoiding parallel numerical
algorithms for dense matrices and tensors

Edgar Solomonik

Department of EECS, UC Berkeley

June 2013



Communication-avoiding parallel algorithms 2/ 48

Outline

Introduction
m Why communication matters

2.5D algorithms
m Matrix multiplication
m LU factorization

Communication lower bounds
m Latency trade-off lower bounds

Tensor Contractions
m Coupled Cluster theory
m Cyclops Tensor Framework

Conclusions



Communication-avoiding parallel algorithms 3/ 48
LIntroduction

LWhy communication matters

Communication costs more than computation

Communication happens off-chip and on-chip and incurs two costs
m latency - time per message
m bandwidth - amount of data per unit time

These costs are becoming more expensive relative to flops

Table: Annual improvements

time per flop bandwidth | latency
59% network 26% 15%
DRAM 23% 5%

Source: James Demmel [FOSC]



Communication-avoiding parallel algorithms

L Introduction

L Why communication matters

Communication takes more energy than computation

10000
1000
wi
3
3
8, 100 -
o
=)
[ = now (45nm)
10 - m 2018 (11nm in this case)
1 -

Q L8 - . X,

Q \9 é;_?; é\\Q } é\\q ng"\ o 9,@

QQ Q‘QJ o« OQ \0 © f;\
& &3

R P

Source: John Shalf (LBNL)



Communication-avoiding parallel algorithms 5/ 48

L Introduction

LWhy communication matters

Topology-aware collective communication

1 MB multicast on BG/P, Cray XT5, and Cray XE6

8192 r T . . : . . .
BG/P —+—
4096 | Xre 5 A

2048
1024

512

Bandwidth (MB/sec)

256

128

8 64 512 4096
#nodes



Communication-avoiding parallel algorithms 6/ 48
L2.5D algorithms

L Matrix multiplication

Blocking matrix multiplication




Communication-avoiding parallel algorithms 7/ 48
L2.5D algorithms
LMatrix multiplication

2D matrix multiplication

[Cannon 69],
[Van De Geijn and Watts 97],

[Agarwal et al 95]

16 CPUs (4x4)

L e e ]
L B |
B |

p) messages

n?/p) bytes of memory



Communication-avoiding parallel algorithms 8/ 48

L 2.5D algorithms

L Matrix multiplication

3D matrix multiplication

[Agarwal et al 95],
[Aggarwal, Chandra, and Snir 90],

[Bernsten 89], [McColl and Tiskin 99]

64 CPUs (4x4x4)

‘e S e W om W @

A~ 4 copies of matrices

O(
o(
O(1) messages
o(

n3/p) flops

n?/p?/3) words moved

n?/p*/3) bytes of memory



Communication-avoiding parallel algorithms 9/ 48

L 2.5D algorithms

L Matrix multiplication

2.5D matrix multiplication

[McColl and Tiskin 99]
[Solomonik and Demmel 11]

O(n*/p) flops

O(n?/\/c - p) words moved
O(1/p/c3) messages

O(c - n?/p) bytes of memory



Communication-avoiding parallel algorithms 10/ 48

L 2.5D algorithms

L Matrix multiplication

Strong scaling matrix multiplication

2.5D MM on BG/P (n=65,536)
100 ,

2.’5D SUMMA —+—

B B 2D SUMMA 1
ol .. SeALAPACK PDGEMM —&—
Il R oo oo e e e .

Percentage of machine peak

#nodes



Communication-avoiding parallel algorithms 11/ 48

L 2.5D algorithms

L Matrix multiplication

Topology-aware mapping on BG/Q

Matrix multiplication factorization strong scaling on Mira (BG/Q), n=65,536

200 2D MM, custom mapping —+— L
,,,,,,,,, 2D MM, default mapping —>— |
150
(0]
©
o
<
K
(_g- 100
©
2
O]
5O e e :
0 I I I
256 512 1024 2048 4096



Communication-avoiding parallel algorithms

L 2.5D algorithms

L Matrix multiplication

Benefit of replication on BG/Q

Gigaflop/s/node

200

150

Matrix multiplication strong scaling on Mira (BG/Q)

2.5D MM n=65,536 —+— l

2D MM n=65,536 ; ;
25D MM n=16,384 —8— 1 o

2D MM n= 16 384 —— '

256 512 1024 2048 4096



Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D blocked LU factorization




Communication-avoiding parallel algorithms 13/ 48

‘—2.5D algorithms
LU factorization

2D blocked LU factorization




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D blocked LU factorization




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D blocked LU factorization

A-LU




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D block-cyclic decomposition

8 8 8 8
8 8 8 8
8 8 8 8




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D block-cyclic LU factorization




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D block-cyclic LU factorization




Communication-avoiding parallel algorithms 13/ 48
L2.5D algorithms
LU factorization

2D block-cyclic LU factorization

N
|




Communication-avoiding parallel algorithms 14/ 48
L2.5D algorithms
LU factorization

3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]
m Tiskin gives algorithm under the BSP model

m Bulk Synchronous Parallel
m considers communication and synchronization

m We give an alternative distributed-memory version and
implementation

m Also, we have a new lower-bound for the latency cost



Communication-avoiding parallel algorithms 15/ 48

‘—2.5D algorithms
LU factorization

2.5D LU factorization

N S X
—Log—
N
N\ [Uoo
1 ™, Uos
o \
AN ANI|
S Udo v
Loo SN
AN T
X, ]
LN _\U
00
G Uor 4 \
L
@ (&
\
!
X




Communication-avoiding parallel algorithms 15/ 48

‘—2.5D algorithms

LU factorization

2.5D LU factorization

(A)

| BN




Communication-avoiding parallel algorithms 15/

‘—2.5D algorithms

LU factorization

2.5D LU factorization




Communication-avoiding parallel algorithms 16/ 48
L2.5D algorithms
LU factorization

2.5D LU strong scaling (without pivoting)

LU without pivoting on BG/P (n=65,536)
100 ,

T
: ideal scaling ------
I i 25D LU ——
; 2D LU

Percentage of machine peak

] e e fane aeee seee eeas cas TR =
0 | |
256 512 1024 2048

#nodes



Communication-avoiding parallel algorithms 17/ 48

L 2.5D algorithms

LU factorization

Topology-aware mapping on BG/Q

LU factorization strong scaling on Mira (BG/Q), n=65,536

100 T T T
2D LU, custom mapping —+— ‘

2D LU, default mapping —#— -1 """""""""
BOf S A —— S— -

Gigaflop/s/node




Communication-avoiding parallel algorithms 18/ 48

L 2.5D algorithms

LU factorization

Benefit of replication on BG/Q

LU factorization strong scaling on Mira (BG/Q)

120 . .
| 25DLUN=131072 —8—

2D LU n=131,072 —%— ]
100 - 25DLUn= 65536 —+— S i

2D LU n= 65,536

Gigaflop/s/node

20 =
0 I I I
256 512 1024 2048 4096



Communication-avoiding parallel algorithms 19/ 48
L2.5D algorithms
LU factorization

Hybrid 2.5D LU factorization

LU factorization strong scaling on Stampede (MIC + Sandy Bridge)

450
! 2. 5D hybrid LU n= 131 072 —¥—
2D hybrid LU n=131,072 —3—
400 2.5D pure-cpu LU n=131,072 n
2.5D hybrid LU n=65,536 ——
) 2.5D pure-cpu LU n=65,536 —l—
3 q : :
£ 300 P~
°
P R i D Rt JECEEIEE TIPSR
o )
T80 j=eee
> @ MmN
S !
L e s
150 - e s s e oo s o oo e o R
100

16 32 64 128 256



Communication-avoiding parallel algorithms 20/ 48
L2.5D algorithms
LU factorization

2.5D LU with pivoting

A= P-L-U, where P is a permutation matrix
2.5D generic pairwise elimination (neighbor/pairwise pivoting
or Givens rotations (QR)) [A. Tiskin 2007]

B pairwise pivoting does not produce an explicit L

B pairwise pivoting may have stability issues for large matrices
Our approach uses tournament pivoting, which is more stable
than pairwise pivoting and gives L explicitly

m pass up rows of A instead of U to avoid error accumulation



Communication-avoiding parallel algorithms 21/ 48

L 2.5D algorithms

LU factorization

2.5D LU on 65,536 cores

Time (sec)

100 [

LU on 16,384 nodes of BG/P (n=131,072)

80 |
60 |
40 |

20 |

T T
communication m—
idle
compute

2X faster
—

2X faster
I




Communication-avoiding parallel algorithms 22/ 48
L2.5D algorithms
LU factorization

Summary of theoretical results for 2.5D algorithms

A comparison between asymptotic communication cost in
ScaLAPACK (SCL) and in 2.5D algorithms (log(p) factors
suppressed). All matrices are n-by-n. For 2.5D algorithms,

celL,p?
problem | lower bound 2.5D lat | 2.5D bw | SCL lat | SCL bw
MM W =Q(n?/p*?) | \/p/c | n*/\/PE | \/P n’/\/p
TRSM W.-S2=Q(n?) | \/p/\c | n*/pc | /P n?/\/p
Cholesky | W - S = Q(n?) NS n?//pc | \/p n’/\/p
LU W-S=Q(n? \/PC n*/ypc | n n’/\/p
QR WS =Q(n? \/pC n?//pc | n n’/\/p
symeig | W-S=Q(n?) \/pPC n?/\/pc | n n’/\/p




Communication-avoiding parallel algorithms 23/ 48
LCommunican:ion lower bounds

LLatency trade-off lower bounds

Dependency bubble expansion along path

Dependency path R Computation chain Communication chain



Communication-avoiding parallel algorithms 24/ 48
LCommunication lower bounds

LLatency trade-off lower bounds

Solution to triangular system of linear equations (TRSV)

Consider solving for x where L is lower-triangular in

n

Define vertices corresponding to computations as v;; = (/j;, yi) in
addition to input vertices corresponding to elements of L and y.

Theorem (Latency-bandwidth Trade-off in TRSV)

The parallel computation of x iny = L - x where L is a
lower-triangular n-by-n matrix, incurs latency cost S and
bandwidth cost W,

W - 5% =Q(n?)



Communication-avoiding parallel algorithms 25/ 48
LCommunican:ion lower bounds

LLatency trade-off lower bounds

TRSV dependency hypergraph

Yr—F1
fo—L21—2
o4
T e S o
L7 7 7
Yar—a1r 22 2Za3—q4
P 4 7 7 4 o,
| YsL51 2452 453 L5545 |




Communication-avoiding parallel algorithms 26/ 48

L Communication lower bounds

LLatency trade-off lower bounds

Cholesky factorization

We can use bubble expansion to prove better latency lower bounds
for LU, as well as Cholesky, and QR factorizations.

Theorem (Latency-bandwidth Trade-off in Cholesky Factorization)

The parallel computation of lower-triangular L for symmetric
positive definite A such that A= LLT where all matrices are
n-by-n, must incur flops cost F, latency cost S, and bandwidth
cost W, such that

W-S=Q(n%) and F-S?>=Q(n%



Communication-avoiding parallel algorithms
LCommunican:ion lower bounds

LLatency trade-off lower bounds

Cholesky computational structure




Communication-avoiding parallel algorithms 28/ 48
LCommunican:ion lower bounds

LLatency trade-off lower bounds

Cholesky dependency hypergraph




Communication-avoiding parallel algorithms 29/ 48
LCommunication lower bounds

LLatency trade-off lower bounds

Krylov subspace methods

Definition (Krylov subspace methods)

Compute AXx, where A typically corresponds to a sparse graph.

Theorem

To compute A¥x, where A corresponds to a 39-point stencil, the
bandwidth W and latency S costs are lower-bounded by

F=Q(k-b%), W=Qk- -b"1), S=Q(k/b),
for any b. We can rewrite these relations as

W. St =Q(k), F-S9=Q(kth).



Communication-avoiding parallel algorithms 30/ 48
L Tensor Contractions

L Coupled Cluster theory

Electronic structure theory

Electronic structure calculations attempt to model the
ground-state (and sometimes excited-state) energies of chemical
systems, taking into account of quantum effects.

Density Functional Theory is the most common method

m cost is typically O(n3) for n electrons

m models system as a density functional, corrects for correlation

m good for metals and regular systems

m bad at molecules due to correlation effects on boundary
Coupled Cluster models electronic correlation explicitly

m cost is typically O(n**t9), where d € {2,4,6}

m the most accurate method used in practice



Communication-avoiding parallel algorithms 31/ 48
L Tensor Contractions

L Coupled Cluster theory

Coupled Cluster definition

Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrodinger equation of the form

HIV) = E|V),

CC rewrites the wave-function |W) as an excitation operator T
applied to the Slater determinant |®g)

W) = eT|®o)
where T is as a sum of T, (the n'th excitation operators)
Teesp =T+ T2
Teesor=T1+ T2+ T3
Teesorq=Ti+To+ T35+ T



Communication-avoiding parallel algorithms 32/ 48
L Tensor Contractions

L Coupled Cluster theory

Coupled Cluster with Double excitations (CCD) equations

ef2\¢o> turns into:
.. 1
Ri® = Vi® + P(ia,jb) | Ti®I¢ — T " + S VE T3 +

1 ab 1mn ae|m ma e ea eay | m
S Tabjmn _ pagymb _ jmayeb  (pTes _ Teay mb

o mn'ij mjie

= (=2Vg" + Vi) T,

i i i f

Ij = (2 enf7 - eT)Trqu

by = Vit VaTd

i i 1 i

= vi-SviTs

. . . 1 1 .
e = Vi ViR(TE - ST - VT



Communication-avoiding parallel algorithms 33/ 48
L Tensor Contractions

LCyclops Tensor Framework

NWChem approach to contractions

A high-level description of NWChem's algorithm for tensor
contractions:

m data layout is abstracted away by the Global Arrays framework

m Global Arrays uses one-sided communication for data
movement

m packed tensors are stored in blocks

m for each contraction, each process does a subset of the block
contractions

m each block is transposed and unpacked prior to contraction

m dynamic load balancing is employed among processors



Communication-avoiding parallel algorithms 34/ 48
L Tensor Contractions

LCyclops Tensor Framework

Cyclops Tensor Framework (CTF) approach to contractions

A high-level description of CTF’s algorithm for tensor contractions:

m packed tensors are decomposed cyclically among toroidal
processor grids

m MPI collectives are used for all communication

for each contraction, a distributed layout is selected based on
internal performance models

performance model considers all possible execution paths
before contraction, tensors are redistributed to a new layout

if there is enough memory, the tensors are (partially) unpacked

all preserved symmetries and non-symmetric indices are folded
in preparation for matrix multiplication

m nested distributed matrix multiply algorithms are used to
perform the contraction in a load-balanced manner



Communication-avoiding parallel algorithms 35/ 48

L Tensor Contractions

L Cyclops Tensor Framework

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

y

O Green denotes fill (unique values) O Red denotes padding / load imbalance



Communication-avoiding parallel algorithms 36/ 48

L Tensor Contractions

L Cyclops Tensor Framework

Virtualization

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by
cyclic phase.

B

A C

X




Communication-avoiding parallel algorithms 37/ 48
L Tensor Contractions

L Cyclops Tensor Framework

3D tensor mapping




Communication-avoiding parallel algorithms 38/ 48
L Tensor Contractions

LCyclops Tensor Framework

A simple data layout

Replicated, distributed nonsymmetric tensor (processor grid)
of nonsymmetric tensors (virtual grid)
of symmetric tensors (folded broken symmetries)
of matrices (unfolded broken and folded preserved symmetries)

The layout typically changes for each tensor between each
contraction.



Communication-avoiding parallel algorithms 39/ 48
L Tensor Contractions

LCyclops Tensor Framework

Tensor redistribution

Our symmetric tensor data layout has a global ordering and a local
ordering

m the local data is not in global order

m cannot compute local data index from global index
m cannot compute global data index from local index
m can iterate over local data and obtain global index
m can iterate over global data and obtain local index

Given these constraints, it is simplest to compute the global index
of each piece of data and sort.



Communication-avoiding parallel algorithms 40/ 48
L Tensor Contractions

LCyclops Tensor Framework

General data redistribution

We use an algorithm faster than sorting for redistribution

iterate over the local data and count where the data must be
sent

communicate counts and compute prefix sums to obtain
offsets

iterate over the local data in global order and bin it
exchange the data (MPI all to all v)

B

iterate over the new local data in global order and retrieve it
from bins

This method is much faster, because it does not explicitly form
and communicate keys for the data.



Communication-avoiding parallel algorithms 41/ 48
L Tensor Contractions

LCyclops Tensor Framework

Threaded general redistribution

In order to hide memory latency and reduce integer operations it is
imperative to thread the redistribution kernel
m prefix sums and counts are trivial to thread
m to thread the iterator over data, we must give each thread
different global indices

m each thread moves the local data corresponding to a global
index partition, preserving the ordering



Communication-avoiding parallel algorithms 42/ 48
L Tensor Contractions

LCyclops Tensor Framework

Interface and code organization

m the CTF codebase is currently 31,345 lines of C++ code

m CTF provides functionality for general tensor contractions,
including a contraction domain-specific language (DSL)

m Aquarius is a quantum chemistry package being developed by
Devin Matthews

m uses CTF for parallel tensor contraction execution

m provides a DSL for spin-integrated tensor contractions

m gives implementations of CC methods including other
necessary components (e.g. SCF)

m efforts are underway to also integrate CTF into the QChem
package



Communication-avoiding parallel algorithms

Tensor Contractions

LCyclops Tensor Framework

CCSD code using our domain specific language

43/ 48

FVO["me"] = VABII["efmn"]*T1["fn"];
FW['se'] = -0.5*VABLI[ 'fenn']*T2[ "fann'];
FWV["ae" FVO["me"]*T1["an"];

FWW["ae"] += VABCI["efan”4T4["n"];
FOO["mi"] = 0.5*VABIJ["efnn"]*T2["efni"];
FOO["mi" FVO["me"]+T1["ei"];

FOO["ni"] TIKA["nif"]+T1["fn"];

WMNII["mnij"] =
WMNII["mnii"]
WMNII["mnii"]
WMNIE[ "mnie”
WMNIE[ "mnie"]
WAMII["anij"]
WAMII["anij"]
WAMII["anij"]
WMAEI[ "naei”
WMAEI[ "naei”
WMAEI[ "naei”]
NMAEI[”Nae\ ]
0. 5*VABCI[ "efan" ]*Tau[ "efin" ];
= 0.5*WMNIE[ "nnie"]+T2["aenn"];

Py

Z1
z1
z1
z1
z2
z2
z2
z2
z2
z2

230"
230"

E1l
E2
E1l
E2
T1
T2

Tau["abij"]

”]

aby"]
"abij"]
"abij"]
abij"]
"abij"]
fucdett

"abii"]

T
T
T

4=
4=

4=

"

4=

VIJKL["'nnij"];
+= 0. S*VABIJ[”efrm”]*Tau[”eﬁ]”],
+= VIIKA[ "mnie"]*T1["ej

= VIJKA['mnie"];
+= VABII["femn"]*T1["fi"];
VIJKA["jina"];
0.5*VABCI["efan"]*Tau[ "efij"];
= VAIBI["amej"]*T1["ei"];
-VAIBI[ "amei"];
9.5*VABLI["efrn"]*T2["afin"];
VABCI["fean" J*T1["fi"];
= WMNIE["nnie"]*T1["an"];

2["aein” J*FVO["ne"];
1["en" ]*VAIBI[ "amei"];
1["an"J*F00[ "mi"];
VABII["abii"];
FW["af"]*T2["bij"];
FoO["ni"]*T2[ "abn]"];
VABCI["abei" [*T1["ei"];
WAMII["mbij"]*T1[ "an"];
©.5+VABCD[ "abef" ]*Tau[ "efii"];
0. 5*WMNII["mnij" ]*Tau[ "abmn"];
WMAEI[ "maei"]*T2[ "ebni"1;
Z1["ai"] *D1["ai"];
Z2["abij"1*02["abi}"1;
Ti["at";
T2["abii"];
E1["at"];
E2["abi}"];

= T2["abij

"1;
Tau["abij"] += 0. 5*71[”a1”]*71[”b]”],

E_CCSD =

0.25%scalar (VABII["efrn" ]*Tau["efrn"1);



Communication-avoiding parallel algorithms 44/ 48
L Tensor Contractions

LCyclops Tensor Framework

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system | # electrons | # orbitals | CTF NWChem
wbh 25 205 14 sec | 36 sec
w7 35 287 90 sec | 178 sec
w9 45 369 127 sec | -

wl2 60 492 336 sec | -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.



Communication-avoiding parallel algorithms

L Tensor Contractions

LCyclops Tensor Framework

Blue Gene/Q up to 1250 orbitals, 250 electrons

45/ 48

CCSD weak scaling on Mira (BG/Q)

600

400

Teraflop/s

| ' Aquarius/CTF —+—
500 F A SRR A—— :

sjob S

16384

32768
#cores

65536

131072



Communication-avoiding parallel algorithms 46/ 48

L Tensor Contractions

LCyclops Tensor Framework

Coupled Cluster efficiency on Blue Gene/Q

Fraction of peak flops

CCSD weak scaling on Mira (BG/Q)

1
| ' Aquarius/CTF ——
(7Y A— A A— -
0. [ oo o o e s
1 | —
0.2 frrrrrr b e g e e
0 | | |
8192 16384 32768 65536 131072

#cores



Communication-avoiding parallel algorithms 47/ 48

L Conclusions

Summary and conclusion

m Communication cost and load balance matter, especially in
parallel

m We can lower bound bandwidth based on projections and
latency based on dependencies and graph expansion

2.5D algorithms present a communication-optimal algorithm
family for dense linear algebra

CTF is a parallel framework for symmetric tensor contractions

Coupled Cluster and Density Functional Theory are electronic
structure calculation methods implemented on top of CTF



Communication-avoiding parallel algorithms 48/ 48

L Conclusions

Acknowledgements

m Collaborators:

James Demmel (adviser)

Grey Ballard (2.5D QR, 2.5D TRSM, 2.5D sym eig)
Erin Carson, Nick Knight (latency lower bounds)
Evangelos Georganas (2.5D with overlap, 1.5D MD)
Katherine Yelick, Michael Driscoll, Penporn Koanantakool
(1.5D MD)

m (INRIA) Mathias Jacquelin, Laura Grigori (2.5D QR)
m Hong-Diep Nguyen (2.5D QR)

m (LBNL) Aydin Bulug (2.5D all-pairs shortest-paths)
m (UT Austin) Devin Matthews (CTF)

m (Argonne) Jeff Hammond (CTF)

m funding and support

m DOE Computational Science Graduate Fellowship (CSGF)
m access to Argonne, NERSC, LLNL, and TACC resources



Communication-avoiding parallel algorithms 49/ 48

Backup slides




Communication-avoiding parallel algorithms 50/ 48

Comparison with ScaLAPACK on BG/Q

BG/Q matrix multiplication

2048
1024
512
256
128
64
32 . ‘ ‘ |

'CTF —+— : :
Scalapack

Teraflop/s

8 | | | | |
4096 8192 16384 32768 65536 131072 262144
#cores




Communication-avoiding parallel algorithms 51/ 48

Tournament pivoting

Partial pivoting is not communication-optimal on a blocked matrix
m requires message/synchronization for each column
m O(n) messages needed

Tournament pivoting is communication-optimal
m performs a tournament to determine best pivot row candidates

m passes up 'best rows’ of A



Communication-avoiding parallel algorithms 52/ 48

2.5D LU factorization with tournament pivoting

PAc

PAs | PAz | PAI | PA0




Communication-avoiding parallel algorithms 53/ 48

2.5D LU factorization with tournament pivoting

Il
I

5




o10]

c

]

(@)

=

o

4 mamanEaEs

c F

(0} T

m WWHHH

a [

n AN

p - 1 |

> fH

(@)

4+

<~ m
2 = REpepuEssE B
3 = aeenaaH HEGHE T

(= A m mumms iREaSEaREE

o = aes: L=

] gansgiaaa H HH

Q et

N

= 5

o

4

O

o

-

1

()

55

N

Communication-avoiding parallel algorithms




pivoting

) e E ]
c SEEEEEaE
) A
S
© T
n A
| -
3
©]
4+

=
< iyt T FFH
=
C — mammsSEREREIRE: "
(@) PR EEEEESSESSS
"= s EEmmRSaaEs
@
N :

Communication-avoiding parallel algorithms

2.5D LU factor




Communication-avoiding parallel algorithms 56/ 48

3D QR factorization

A= Q- R where Q is orthogonal R is upper-triangular
m 3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]
m Tiskin minimizes latency and bandwidth by working on
slanted panels

m 3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates



Communication-avoiding parallel algorithms 57/ 48

2.5D QR factorization

m The orthogonalization updates (/ —2yy ") do not commute so
aggregate them into (/ — YTY)T.

m To minimize latency perform recursive TSQR on the panel
m Must reconstruct Householder Y from TSQR @, R



Communication-avoiding parallel algorithms 58/ 48

Householder reconstruction

Yamamoto's algorithm
m Given A = QR for tall-skinny A,
m perform LU on (@1 — /) to get LU([Q1 — 1, @]) =Y -(TYT).
m as stable as QR in practice



Communication-avoiding parallel algorithms 59/ 48

3D QR using YT representation




Communication-avoiding parallel algorithms 60/ 48

Symmetric eigensolve via QR

Need to apply two sided updates to reduce to tridiagonal T
T=-YTYDA(I - YTTYT)
V=AYTT - %YTYTAYTT
T=A-YVT —vy’

In order to use TSQR to compute Y by panel must reduce to
banded form first.



Communication-avoiding parallel algorithms 61/ 48

2.5D symmetric eigensolve

Algorithm outline

m Compute TSQR on each subpanel A; = Q; - R; to reduce A to
band size n//pc

m Recover Y; from Q; and A; via Yamamoto's method

m Accumulate Y = [Y1, Y2... Y]] on processor layers and apply
in parallel to next panel A1

m Reduce from banded to tridiagonal using symmetric band
reduction with ,/pc processors

m Use MRRR to compute eigenvalues of the tridiagonal matrix



Communication-avoiding parallel algorithms 62/ 48

Communication lower bound for tensor contractions

The computational graph corresponding to a tensor contraction
can be higher dimensional, but there are still only three projections
corresponding to A, B, and C. So, if the contraction necessitates
F floating point operations, the bandwidth lower bound is still just

=0 )

Therefore. folding contractions into matrix multiplication and
running a good multiplication algorithm is communication-optimal.



Communication-avoiding parallel algorithms 63/ 48

Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

m in a blocked distribution process p; owns

{Vi-n/p+17 s V(i+1)-n/p}

m in a cyclic distribution process p; owns {v;, vaj, ... V(n/p)i}
A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form < and not <, so in effect, diagonals are stored for
skew-symmetric tensors.



Communication-avoiding parallel algorithms 64/ 48

Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

if there is enough memory, unpack broken symmetries

perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions



Communication-avoiding parallel algorithms 65/ 48

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by
m a base grid, obtained from the physical topology or from
factorizing the number of processors
m folding all possible combinations of adjacent processor grid
dimensions
Tensors are contracted on higher dimensional processor grids by
®m mapping an index shared by two tensors in the contraction to
different processor grid dimensions
m running a distributed matrix multiplication algorithm for each
such 'mismatched’ index
m replicating data along some processor dimensions 'a la 2.5D’



Communication-avoiding parallel algorithms 66/ 48

L Density Functional Theory

Density Function Theory (DFT)

DFT uses the fact that the ground-state wave-function Wy is a
unique functional of the particle density n(r)

\Uo = W[no]

Since H= T+ V + U, where T, V, and U, are the kinetic,
potential, and interaction contributions respectively,

Elno] = (W[no]| T{no] + V[no] + Ulno][W[no])

DFT assumes U = 0, and solves the Kohn-Sham equations
h2 5
where Vs has a exchange-correlation potential correction,

v® = v+ [ 0 o)
s\F) = r = r 'xc|ns(r

|F—r



Communication-avoiding parallel algorithms 67/ 48

L Density Functional Theory

Density Function Theory (DFT), contd.

The exchange-correlation potential Vxc is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

Given an (initial guess) n(r) calculate Vs via Hartree-Fock
and functional

Solve (diagonalize) the Kohn-Sham equation to obtain each ¢;
Compute a new guess at n(r) based on ¢;

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.



Communication-avoiding parallel algorithms 68/ 48

L Density Functional Theory

Linear algebra in DFT

DFT requires a few core numerical linear algebra kernels
m Matrix multiplication (of rectangular matrices)
m Linear equations solver
m Symmetric eigensolver (diagonalization)

We proceed to study schemes for optimization of these algorithms.



Communication-avoiding parallel algorithms 69/ 48

L Density Functional Theory

2.5D algorithms for DFT

2.5D matrix multiplication is integrated into QBox.
m QBox is a DFT code developed by Erik Draeger et al.

m Depending on system/functional can spend as much as 80%
time in MM

m Running on most of Sequoia and getting significant speed up
from 3D

m 1.75X speed-up on 8192 nodes 1792 gold atoms, 31
electrons/atom

m Eventually hope to build and integrate a 3D eigensolver into
QBox



Communication-avoiding parallel algorithms 70/ 48

L Coupled Cluster formalism

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss
ab ab 1 apizazh

Fro= £m4) vinth,
fn
~ 1
Fo o= (i =S Fre - vl + v,
m mnf fn

~ 1
Fio= (U= 0m)f7 ) RN 45D vt + ) v,
e fn

nef



Communication-avoiding parallel algorithms 71/ 48

L Coupled Cluster formalism

Our CCSD factorization

+Zv tf,

vmn + PIZ + Z er?_nTef

ZWmnt +Z ’?at +22 ef tm7
am—i—P’ZV Z am__ ef
met +Zfat +Z age +Z vaefm | %Z‘

efm

R P W - PR e+
m

e me



Communication-avoiding parallel algorithms 72/ 48

L Coupled Cluster formalism

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira

4 processes per node, 16 threads per process

Total time: 18 mins

n,-orbitals, n,-electrons, p-processors, M-local memory size

kernel % of time | complexity architectural bounds
DGEMM 45% o(ntn2/p) flops/mem bandwidth
broadcasts 20% O(n%n2/pv/M) | multicast bandwidth
prefix sum 10% O(p) allreduce bandwidth
data packing | 7% Oo(n2n%/p) integer ops
all-to-all-v 7% 0o(n2n2/p) bisection bandwidth
tensor folding | 4% 0o(n2n2/p) memory bandwidth




Communication-avoiding parallel algorithms 73/ 48

L Coupled Cluster formalism

Performance breakdown on Cray XE6

Performance data for a CCSD iteration with 100 electrons and 500
orbitals on 256 nodes of Hopper

4 processes per node, 6 threads per process

Total time: 9 mins

v-orbitals, o-electrons

kernel % of time complexity architectural bounds
DGEMM 21% 1} 24% | O(v*0?/p) flops/mem bandwidth
broadcasts 32% 1 12% | O(v*0?/pv/M) | multicast bandwidth
prefix sum 7% | 3% O(p) allreduce bandwidth
data packing | 10% 1 3% | O(v?0?/p) integer ops
all-to-all-v 8% 0(v?0?/p) bisection bandwidth
tensor folding | 4% 0(v?0?/p) memory bandwidth




	Introduction
	Why communication matters

	2.5D algorithms
	Matrix multiplication
	LU factorization

	Communication lower bounds
	Latency trade-off lower bounds

	Tensor Contractions
	Coupled Cluster theory
	Cyclops Tensor Framework

	Conclusions
	Appendix
	Density Functional Theory
	Coupled Cluster formalism



