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Strong scaling

Solving science problems faster

Parallel computers can solve bigger problems

I weak scaling

Parallel computers can also solve a �xed problem faster

I strong scaling

Obstacles to strong scaling

I may increase relative cost of communication

I may hurt load balance
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Strong scaling

Achieving strong scaling

How to reduce communication and maintain load balance?

I reduce communication along the critical path

Communicate less

I avoid unnecessary communication

Communicate smarter

I know your network topology
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Strong scaling matrix multiplication
Performing faster at scale

Strong scaling matrix multiplication
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Strong scaling matrix multiplication
Performing faster at scale

Blocking matrix multiplication
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Strong scaling matrix multiplication
Performing faster at scale

2D matrix multiplication

[Cannon 69], [Van De Geijn and Watts 97]
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Strong scaling matrix multiplication
Performing faster at scale

3D matrix multiplication

[Agarwal et al 95], [Aggarwal, Chandra, and Snir 90], [Bernsten 89]
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Strong scaling matrix multiplication
Performing faster at scale

2.5D matrix multiplication
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Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2.5D MM(p; c)) = O(n3=p) ops

+ O(n2=
p
c � p) words moved

+ O(
q
p=c3) messages�

*ignoring log(p) factors
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Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2D MM(p)) = O(n3=p) ops

+ O(n2=
p
p) words moved

+ O(
p
p) messages�

= cost(2.5D MM(p; 1))

*ignoring log(p) factors
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2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2.5D MM(c � p; c)) = O(n3=(c � p)) ops
+ O(n2=(c � pp)) words moved

+ O(
p
p=c) messages

= cost(2D MM(p))=c

perfect strong scaling
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Strong scaling matrix multiplication
Performing faster at scale

2.5D MM on 65,536 cores
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Strong scaling matrix multiplication
Performing faster at scale

Cost breakdown of MM on 65,536 cores
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU strong scaling (without pivoting)
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

A
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L₀₀

U₀₀

Edgar Solomonik and James Demmel 2.5D algorithms 17/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L

U
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L

U

S=A-LU
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic decomposition
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization

L

U
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization

L
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S=A-LU
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

Look at how this
update is distributed.

What does it remind you of?
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

Look at how this
update is distributed.

A
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Same 3D update
in multiplication
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

Communication-avoiding pivoting

Partial pivoting is not communication-optimal on a blocked matrix

I require message/synchronization for each column

I O(n) messages required

Tournament pivoting or Communication-Avoiding (CA) pivoting

I performs a tournament to determine best pivot row candidates

I blocked CA-pivoting algorithm is communication-optimal
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

Strong scaling of 2.5D LU with tournament pivoting
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting
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Communication-optimal LU without pivoting
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2.5D LU factorization with tournament pivoting
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Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU on 65,536 cores
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Conclusion
Our contributions:
I 2.5D mapping of matrix multiplication

I Optimal according to lower bounds in [Irony, Tiskin, Toledo
04] and [Aggarwal, Chandra, and Snir 90]

I A new latency lower bound for LU
I Communication-optimal 2.5D LU

I Bandwidth-optimal according to general lower bound [Ballard,
Demmel, Holtz, Schwartz 10]

I Latency-optimal according to new lower bound

Open questions:

I 2.5D Householder QR

Reections:

I Replication allows better strong scaling

I Topology-aware mapping cuts communication costs
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Backup slides
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Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

A new latency lower bound for LU

LU with O(
p
P=c3) messages?

I For block size n=d LU does
I 
(n3=d2) ops
I 
(n2=d) words
I 
(d) msgs

I Now pick d (=latency cost)
I d = 
(

p
P) to minimize

ops
I d = 
(

p
c � P) to

minimize words

No dice. Lets minimize
bandwidth.
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Performance of multicast (BG/P vs Cray)
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Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Why the performance discrepancy in multicasts?

I Cray machines use binomial multicasts
I Form spanning tree from a list of nodes
I Route copies of message down each branch
I Network contention degrades utilization on a 3D torus

I BG/P uses rectangular multicasts
I Require network topology to be a k-ary n-cube
I Form 2n edge-disjoint spanning trees

I Route in di�erent dimensional order

I Use both directions of bidirectional network
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Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

2D rectangular multicasts trees

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined
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A tensor contraction library implementation

Model veri�cation: one dimension
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Model veri�cation: two dimensions
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Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Model veri�cation: three dimensions
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Algorithms for distributed tensor contractions
A tensor contraction library implementation

Another look at that �rst plot

Just how much better are
rectangular algorithms on
P = 4096 nodes?

I Binomial collectives on XE6
I 1/30th of link

bandwidth

I Rectangular collectives on
BG/P

I 4.3X the link bandwidth

I Over 120X improvement

in e�ciency!

How can we apply this?
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Bridging dense linear algebra techniques and applications

Target application: tensor contractions in electronic structure
calculations (quantum chemistry)

I Often memory constrained

I Most target tensors are oddly shaped

I Need support for high dimensional tensors

I Need handling of partial/full tensor symmetries

I Would like to use communication avoiding ideas (blocking,
2.5D, topology-awareness)
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A tensor contraction library implementation

Decoupling memory usage and topology-awareness

I 2.5D algorithms couple memory usage and virtual topology
I c copies of a matrix implies c processor layers

I Instead, we can nest 2D and/or 2.5D algorithms

I Higher-dimensional algorithms allow smarter topology aware
mapping
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Algorithms for distributed tensor contractions
A tensor contraction library implementation

4D SUMMA-Cannon
How do we map to a 3D partition
without using more memory

I SUMMA (bcast-based) on
2D layers

I Cannon (send-based) along
third dimension

I Cannon calls SUMMA as
sub-routine

I Minimize ine�cient
(non-rectangular)
communication

I Allow better overlap

I Treats MM as a 4D tensor
contraction
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A tensor contraction library implementation

Symmetry is a problem
I A fully symmetric tensor of dimenson d requires only nd=d!

storage
I Symmetry signi�cantly complicates sequential implementation

I Irregular indexing makes alignment and unrolling di�cult
I Generalizing over all partial-symmetries is expensive

I Blocked or block-cyclic virtual processor decmpositions give
irregular or imbalanced virtual grids

Blocked Block-cyclic

P0 P1

P2 P3
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A tensor contraction library implementation

Solving the symmetry problem
I A cyclic decomposition allows balanced and regular blocking

of symmetric tensors
I If the cyclic-phase is the same in each symmetric dimension,

each sub-tensor retains the symmetry of the whole tensor

Cyclic
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Algorithms for distributed tensor contractions
A tensor contraction library implementation

A generalized cyclic layout is still challenging

I In order to retain partial symmetry, all symmetric dimensions
of a tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I And yet the virtual mapping, needs to be mapped to a
physical topology, which can be any shape
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Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be 'stretchable'
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Algorithms for distributed tensor contractions
A tensor contraction library implementation

Constructing a virtual processor grid for MM

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C
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Unfolding the processor grid

I Higher-dimensional fully-symmetric tensors can be mapped
onto a lower-dimensional processor grid via creation of new
virtual dimensions

I Lower-dimensional tensors can be mapped onto a
higher-dimensional processor grid via by unfolding (serializing)
pairs of processor dimensions

I However, when possible, replication is better than unfolding,
since unfolded processor grids can lead to an unbalanced
mapping
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A basic parallel algorithm for symmetric tensor contractions

1. Arrange processor grid in any k-ary n-cube shape

2. Map (via unfold & virt) both A and B cyclically along the
dimensions being contracted

3. Map (via unfold & virt) the remaining dimensions of A and B

cyclically

4. For each tensor dimension contracted over, recursively
mulitply the tensors along the mapping

I Each contraction dimension is represented with a nested call to
a local multiply or a parallel algorithm (e.g. Cannon)
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Tensor library structure

The library supports arbitrary-dimensional parallel tensor
contractions with any symmetries on n-cuboid processor torus
partitions

1. Load tensor data by (global rank, value) pairs

2. Once a contraction is de�ned, map participating tensors

3. Distribute or reshu�e tensor data/pairs

4. Construct contraction algorithm with recursive function/args
pointers

5. Contract the sub-tensors with a user-de�ned sequential
contract function

6. Output (global rank, value) pairs on request
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Current tensor library status

I Dense and symmetric remapping/repadding/contractions
implemented

I Currently functional only for dense tensors, but with full
symmetric logic

I Can perform automatic mapping with physical and virtual
dimensions, but cannot unfold processor dimensions yet

I Complete library interface implemented, including basic
auxillary functions (e.g. map/reduce, sum, etc.)

Edgar Solomonik and James Demmel 2.5D algorithms 57/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Next implementation steps

I Currently integrating library with a SCF method code that
uses dense contractions

I Get symmetric redistribution working correctly

I Automatic unfolding of processor dimensions

I Implement mapping by replication to enable 2.5D algorithms

I Much basic performance debugging/optimization left to do

I More optimization needed for sequential symmetric
contractions
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Very preliminary contraction library results

Contracts tensors of size 64x64x256x256 in 1 second on 2K nodes
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Potential bene�t of unfolding
Unfolding smallest two BG/P torus dimensions improves
performance.
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