
Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal parallel 2.5D matrix
multiplication and LU factorization algorithms

Edgar Solomonik and James Demmel

UC Berkeley

September 1st, 2011

Edgar Solomonik and James Demmel 2.5D algorithms 1/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Outline

Introduction
Strong scaling

2.5D matrix multiplication
Strong scaling matrix multiplication
Performing faster at scale

2.5D LU factorization
Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

Conclusion

Edgar Solomonik and James Demmel 2.5D algorithms 2/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling

Solving science problems faster

Parallel computers can solve bigger problems

I weak scaling

Parallel computers can also solve a �xed problem faster

I strong scaling

Obstacles to strong scaling

I may increase relative cost of communication

I may hurt load balance

Edgar Solomonik and James Demmel 2.5D algorithms 3/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling

Achieving strong scaling

How to reduce communication and maintain load balance?

I reduce communication along the critical path

Communicate less

I avoid unnecessary communication

Communicate smarter

I know your network topology

Edgar Solomonik and James Demmel 2.5D algorithms 4/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

#nodes

Matrix multiplication on BG/P (n=65,536)

2.5D MM
2D MM

Edgar Solomonik and James Demmel 2.5D algorithms 5/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

Blocking matrix multiplication

A

B
A

B

A

B

A
B

Edgar Solomonik and James Demmel 2.5D algorithms 6/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2D matrix multiplication

[Cannon 69], [Van De Geijn and Watts 97]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

Edgar Solomonik and James Demmel 2.5D algorithms 7/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

3D matrix multiplication

[Agarwal et al 95], [Aggarwal, Chandra, and Snir 90], [Bernsten 89]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

64 CPUs (4x4x4)

4 copies of matrices

Edgar Solomonik and James Demmel 2.5D algorithms 8/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D matrix multiplication

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

Edgar Solomonik and James Demmel 2.5D algorithms 9/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2.5D MM(p; c)) = O(n3=p) ops

+ O(n2=
p
c � p) words moved

+ O(
q
p=c3) messages�

*ignoring log(p) factors

Edgar Solomonik and James Demmel 2.5D algorithms 10/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2D MM(p)) = O(n3=p) ops

+ O(n2=
p
p) words moved

+ O(
p
p) messages�

= cost(2.5D MM(p; 1))

*ignoring log(p) factors

Edgar Solomonik and James Demmel 2.5D algorithms 11/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D strong scaling

n = dimension, p = #processors, c = #copies of data

I must satisfy 1 � c � p1=3

I special case: c = 1 yields 2D algorithm

I special case: c = p1=3 yields 3D algorithm

cost(2.5D MM(c � p; c)) = O(n3=(c � p)) ops
+ O(n2=(c � pp)) words moved

+ O(
p
p=c) messages

= cost(2D MM(p))=c

perfect strong scaling

Edgar Solomonik and James Demmel 2.5D algorithms 12/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

2.5D MM on 65,536 cores

 0

 20

 40

 60

 80

 100

8192 131072

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

n

Matrix multiplication on 16,384 nodes of BG/P

12X faster

2.7X faster

Using c=16 matrix copies

2D MM
2.5D MM

Edgar Solomonik and James Demmel 2.5D algorithms 13/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Strong scaling matrix multiplication
Performing faster at scale

Cost breakdown of MM on 65,536 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=131072, 2D

n=131072, 2.5D

E
x
e

c
u

ti
o

n
 t

im
e

 n
o

rm
a

liz
e

d
 b

y
 2

D

Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

Edgar Solomonik and James Demmel 2.5D algorithms 14/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU strong scaling (without pivoting)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

Edgar Solomonik and James Demmel 2.5D algorithms 15/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

A

Edgar Solomonik and James Demmel 2.5D algorithms 16/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L₀₀

U₀₀

Edgar Solomonik and James Demmel 2.5D algorithms 17/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L

U

Edgar Solomonik and James Demmel 2.5D algorithms 18/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D blocked LU factorization

L

U

S=A-LU

Edgar Solomonik and James Demmel 2.5D algorithms 19/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic decomposition

8 8 8 8

8 8 8 8

8 8 8 8

8 8 8 8

Edgar Solomonik and James Demmel 2.5D algorithms 20/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization

Edgar Solomonik and James Demmel 2.5D algorithms 21/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization

L

U

Edgar Solomonik and James Demmel 2.5D algorithms 22/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2D block-cyclic LU factorization

L

U

S=A-LU

Edgar Solomonik and James Demmel 2.5D algorithms 23/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik and James Demmel 2.5D algorithms 24/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik and James Demmel 2.5D algorithms 25/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

L₀₀

U₀₀

U₀₃

U₀₃

U₀₁

L₂₀
L₃₀

L₁₀

(A)

(B)

U

L

(C)
(D)

U₀₀

U₀₀

L₀₀

L₀₀

U₀₀

L₀₀

Edgar Solomonik and James Demmel 2.5D algorithms 26/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

Look at how this
update is distributed.

What does it remind you of?

Edgar Solomonik and James Demmel 2.5D algorithms 27/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization

Look at how this
update is distributed.

A

B
A

B

A

B

A
B

Same 3D update
in multiplication

Edgar Solomonik and James Demmel 2.5D algorithms 28/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

Communication-avoiding pivoting

Partial pivoting is not communication-optimal on a blocked matrix

I require message/synchronization for each column

I O(n) messages required

Tournament pivoting or Communication-Avoiding (CA) pivoting

I performs a tournament to determine best pivot row candidates

I blocked CA-pivoting algorithm is communication-optimal

Edgar Solomonik and James Demmel 2.5D algorithms 29/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

Strong scaling of 2.5D LU with tournament pivoting

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

#nodes

LU with tournament pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU
ScaLAPACK PDGETRF

Edgar Solomonik and James Demmel 2.5D algorithms 30/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

PA₀

Edgar Solomonik and James Demmel 2.5D algorithms 31/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

PA₀

Edgar Solomonik and James Demmel 2.5D algorithms 32/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

PA₀

Edgar Solomonik and James Demmel 2.5D algorithms 33/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

L₃₀

L₁₀
L₂₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

PA₀

Edgar Solomonik and James Demmel 2.5D algorithms 34/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Communication-optimal LU without pivoting
Communication-optimal LU with pivoting

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

T
im

e
 (

s
e

c
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik and James Demmel 2.5D algorithms 35/ 36



Introduction
2.5D matrix multiplication

2.5D LU factorization
Conclusion

Conclusion
Our contributions:
I 2.5D mapping of matrix multiplication

I Optimal according to lower bounds in [Irony, Tiskin, Toledo
04] and [Aggarwal, Chandra, and Snir 90]

I A new latency lower bound for LU
I Communication-optimal 2.5D LU

I Bandwidth-optimal according to general lower bound [Ballard,
Demmel, Holtz, Schwartz 10]

I Latency-optimal according to new lower bound

Open questions:

I 2.5D Householder QR

Reections:

I Replication allows better strong scaling

I Topology-aware mapping cuts communication costs

Edgar Solomonik and James Demmel 2.5D algorithms 36/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Backup slides

Edgar Solomonik and James Demmel 2.5D algorithms 37/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

A new latency lower bound for LU

LU with O(
p
P=c3) messages?

I For block size n=d LU does
I 
(n3=d2) ops
I 
(n2=d) words
I 
(d) msgs

I Now pick d (=latency cost)
I d = 
(

p
P) to minimize

ops
I d = 
(

p
c � P) to

minimize words

No dice. Lets minimize
bandwidth.

k₁

k₀

k₂

k₃

k₄

k

A₀₀

A₂₂

A₃₃

A₄₄

A

n

n

critical path

d-1,d-1d-1

A₁₁

Edgar Solomonik and James Demmel 2.5D algorithms 38/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Performance of multicast (BG/P vs Cray)

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
a
n
d
w

id
th

 (
M

B
/s

e
c
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Edgar Solomonik and James Demmel 2.5D algorithms 39/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Why the performance discrepancy in multicasts?

I Cray machines use binomial multicasts
I Form spanning tree from a list of nodes
I Route copies of message down each branch
I Network contention degrades utilization on a 3D torus

I BG/P uses rectangular multicasts
I Require network topology to be a k-ary n-cube
I Form 2n edge-disjoint spanning trees

I Route in di�erent dimensional order

I Use both directions of bidirectional network

Edgar Solomonik and James Demmel 2.5D algorithms 40/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

2D rectangular multicasts trees

root
2D 4X4 Torus Spanning tree 1 Spanning tree 2

Spanning tree 3 Spanning tree 4 All 4 trees combined

Edgar Solomonik and James Demmel 2.5D algorithms 41/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Model veri�cation: one dimension

 200

 400

 600

 800

 1000

1 8 64 512 4096 32768 262144

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

msg size (KB)

DCMF Broadcast on a ring of 8 nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

Edgar Solomonik and James Demmel 2.5D algorithms 42/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Model veri�cation: two dimensions

 0

 500

 1000

 1500

 2000

1 8 64 512 4096 32768 262144

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

msg size (KB)

DCMF Broadcast on 64 (8x8) nodes of BG/P

trect model
DCMF rectangle dput

tbnm model
DCMF binomial

Edgar Solomonik and James Demmel 2.5D algorithms 43/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Model veri�cation: three dimensions

 0

 500

 1000

 1500

 2000

 2500

 3000

1 8 64 512 4096 32768 262144

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

msg size (KB)

DCMF Broadcast on 512 (8x8x8) nodes of BG/P

trect model
Faraj et al data

DCMF rectangle dput
tbnm model

DCMF binomial

Edgar Solomonik and James Demmel 2.5D algorithms 44/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Another look at that �rst plot

Just how much better are
rectangular algorithms on
P = 4096 nodes?

I Binomial collectives on XE6
I 1/30th of link

bandwidth

I Rectangular collectives on
BG/P

I 4.3X the link bandwidth

I Over 120X improvement

in e�ciency!

How can we apply this?

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

Edgar Solomonik and James Demmel 2.5D algorithms 45/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Bridging dense linear algebra techniques and applications

Target application: tensor contractions in electronic structure
calculations (quantum chemistry)

I Often memory constrained

I Most target tensors are oddly shaped

I Need support for high dimensional tensors

I Need handling of partial/full tensor symmetries

I Would like to use communication avoiding ideas (blocking,
2.5D, topology-awareness)

Edgar Solomonik and James Demmel 2.5D algorithms 46/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Decoupling memory usage and topology-awareness

I 2.5D algorithms couple memory usage and virtual topology
I c copies of a matrix implies c processor layers

I Instead, we can nest 2D and/or 2.5D algorithms

I Higher-dimensional algorithms allow smarter topology aware
mapping

Edgar Solomonik and James Demmel 2.5D algorithms 47/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

4D SUMMA-Cannon
How do we map to a 3D partition
without using more memory

I SUMMA (bcast-based) on
2D layers

I Cannon (send-based) along
third dimension

I Cannon calls SUMMA as
sub-routine

I Minimize ine�cient
(non-rectangular)
communication

I Allow better overlap

I Treats MM as a 4D tensor
contraction

 0

 20

 40

 60

 80

 100

4096 8192 16384 32768 65536 131072

P
e
rc

e
n
ta

g
e
 o

f 
fl
o
p
s
 p

e
a
k

matrix dimension

MM on 512 nodes of BG/P

2.5D MM
4D MM

2D MM (Cannon)
PBLAS MM

Edgar Solomonik and James Demmel 2.5D algorithms 48/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Symmetry is a problem
I A fully symmetric tensor of dimenson d requires only nd=d!

storage
I Symmetry signi�cantly complicates sequential implementation

I Irregular indexing makes alignment and unrolling di�cult
I Generalizing over all partial-symmetries is expensive

I Blocked or block-cyclic virtual processor decmpositions give
irregular or imbalanced virtual grids

Blocked Block-cyclic

P0 P1

P2 P3

Edgar Solomonik and James Demmel 2.5D algorithms 49/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Solving the symmetry problem
I A cyclic decomposition allows balanced and regular blocking

of symmetric tensors
I If the cyclic-phase is the same in each symmetric dimension,

each sub-tensor retains the symmetry of the whole tensor

Cyclic

Edgar Solomonik and James Demmel 2.5D algorithms 50/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

A generalized cyclic layout is still challenging

I In order to retain partial symmetry, all symmetric dimensions
of a tensor must be mapped with the same cyclic phase

I The contracted dimensions of A and B must be mapped with
the same phase

I And yet the virtual mapping, needs to be mapped to a
physical topology, which can be any shape

Edgar Solomonik and James Demmel 2.5D algorithms 51/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Virtual processor grid dimensions

I Our virtual cyclic topology is somewhat restrictive and the
physical topology is very restricted

I Virtual processor grid dimensions serve as a new level of
indirection

I If a tensor dimension must have a certain cyclic phase, adjust
physical mapping by creating a virtual processor dimension

I Allows physical processor grid to be 'stretchable'

Edgar Solomonik and James Demmel 2.5D algorithms 52/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Constructing a virtual processor grid for MM

Matrix multiply on 2x3 processor grid. Red lines represent
virtualized part of processor grid. Elements assigned to blocks by

cyclic phase.

X =

A
B

C

Edgar Solomonik and James Demmel 2.5D algorithms 53/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Unfolding the processor grid

I Higher-dimensional fully-symmetric tensors can be mapped
onto a lower-dimensional processor grid via creation of new
virtual dimensions

I Lower-dimensional tensors can be mapped onto a
higher-dimensional processor grid via by unfolding (serializing)
pairs of processor dimensions

I However, when possible, replication is better than unfolding,
since unfolded processor grids can lead to an unbalanced
mapping

Edgar Solomonik and James Demmel 2.5D algorithms 54/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

A basic parallel algorithm for symmetric tensor contractions

1. Arrange processor grid in any k-ary n-cube shape

2. Map (via unfold & virt) both A and B cyclically along the
dimensions being contracted

3. Map (via unfold & virt) the remaining dimensions of A and B

cyclically

4. For each tensor dimension contracted over, recursively
mulitply the tensors along the mapping

I Each contraction dimension is represented with a nested call to
a local multiply or a parallel algorithm (e.g. Cannon)

Edgar Solomonik and James Demmel 2.5D algorithms 55/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Tensor library structure

The library supports arbitrary-dimensional parallel tensor
contractions with any symmetries on n-cuboid processor torus
partitions

1. Load tensor data by (global rank, value) pairs

2. Once a contraction is de�ned, map participating tensors

3. Distribute or reshu�e tensor data/pairs

4. Construct contraction algorithm with recursive function/args
pointers

5. Contract the sub-tensors with a user-de�ned sequential
contract function

6. Output (global rank, value) pairs on request

Edgar Solomonik and James Demmel 2.5D algorithms 56/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Current tensor library status

I Dense and symmetric remapping/repadding/contractions
implemented

I Currently functional only for dense tensors, but with full
symmetric logic

I Can perform automatic mapping with physical and virtual
dimensions, but cannot unfold processor dimensions yet

I Complete library interface implemented, including basic
auxillary functions (e.g. map/reduce, sum, etc.)

Edgar Solomonik and James Demmel 2.5D algorithms 57/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Next implementation steps

I Currently integrating library with a SCF method code that
uses dense contractions

I Get symmetric redistribution working correctly

I Automatic unfolding of processor dimensions

I Implement mapping by replication to enable 2.5D algorithms

I Much basic performance debugging/optimization left to do

I More optimization needed for sequential symmetric
contractions

Edgar Solomonik and James Demmel 2.5D algorithms 58/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Very preliminary contraction library results

Contracts tensors of size 64x64x256x256 in 1 second on 2K nodes

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

#nodes

Strong scaling of dense contraction on BG/P 64x64x256x256

no rephase
rephase every contraction

repad every contraction

Edgar Solomonik and James Demmel 2.5D algorithms 59/ 36



Latency lower bound for LU
Rectangular collectives
Algorithms for distributed tensor contractions
A tensor contraction library implementation

Potential bene�t of unfolding
Unfolding smallest two BG/P torus dimensions improves
performance.

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f 

m
a

c
h

in
e

 p
e

a
k

#nodes

Strong scaling of dense contraction on BG/P 64x64x256x256

no-rephase 2D
no-rephase 3D

Edgar Solomonik and James Demmel 2.5D algorithms 60/ 36


	Introduction
	Strong scaling

	2.5D matrix multiplication
	Strong scaling matrix multiplication
	Performing faster at scale

	2.5D LU factorization
	Communication-optimal LU without pivoting
	Communication-optimal LU with pivoting

	Conclusion
	Appendix
	Latency lower bound for LU
	Rectangular collectives
	Algorithms for distributed tensor contractions
	A tensor contraction library implementation



