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Beyond computational complexity

Algorithms should minimize communication, not just computation
@ communication and synchronization cost more energy than flops

@ two types of communication (data movement):

S - synchronizaton

Memor -

Y IM"W - horizontal
communication

Q - vertical communication

Cache
O

Processor .

o vertical (intranode memory—cache)
o horizontal (internode network transfers)

@ parallel algorithm design involves tradeoffs: computation vs

communication vs synchronization
@ parameterized algorithms provide optimality and flexibility
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BSP model definition

The Bulk Synchronous Parallel (BSP) model! is a theoretical
execution/cost model for parallel algorithms

@ execution is subdivided into s supersteps, each associated with a global
synchronization (cost «)

@ at the start of each superstep, processors interchange messages, then
they perform local computation

@ if the maximum amount of data sent or received by any process is m;
at superstep i then the horizontal communication cost is

1\ aliant 1990
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Cost model for parallel algorithms

In addition to computation and BSP horizontal communication cost, we
consider vertical communication cost

@ F — computation cost (local computation)
@ Q — vertical communication cost (memory—cache traffic)
e W — horizontal communication cost (interprocessor communication)

@ S — synchronization cost (number of supersteps)
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Symmetric eigenvalue problem

Given a dense symmetric matrix A € R™" find diagonal matrix D so
AX = XD

where X is an orthogonal matrix composed of eigenvectors of A
@ diagonalization — reduction of A to diagonal matrix D
@ computing the SVD has very similar computational structure
e we focus on tridiagonalization (bidiagonalization for SVD), from which
standard approaches (e.g. MRRR) can be used

@ core building blocks:

e matrix multiplication
o QR factorization

Householder Symposium XX A communication-avoiding symmetric eigensolver



Parallel matrix multiplication

Multiplication of A € R™k and B € R¥*" can be done in O(1)

supersteps with communication cost W = O((’"T”k)2/3> provided

sufficiently memory and sufficiently large p
@ when m = n = k, 3D blocking gets O(pl/ﬁ) improvement over 2D?
@ when m, n, k are unequal, need appropriate processor grid>

(b) Two large dimensions
k
/ \
M
(@) One large dimension (©) Three large dimensions

2Berntsen, Par. Comp., 1989; Agarwal, Chandra, Snir, TCS, 1990; Agarwal, Balle, Gustavson, Joshi, Palkar, IBM, 1995;
McColl, Tiskin, Algorithmica, 1999; ...

3Demmel, Eliahu, Fox, Kamil, Lipshitz, Schwartz, Spillinger 2013
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Bandwidth-efficient QR and diagonalization

Goal: achieve the same communication complexity for QR and
diagonalization as for matrix multiplication

@ synchronization complexity expected to be higher
W-S=Q(n?)

product of communication and synchronization cost must be greater
than the square of the number of columns
@ general strategy

@ use communication-efficient matrix-multiplication for QR
@ use communication-efficient QR for diagonalization
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QR factorization of tall-and-skinny matrices

Consider the reduced factorization A = QR with A,Q € R™*" and
R € R™" when m > n (in particular m > np)

@ A is tall-and-skinny, each processor owns a block of rows
o Householder-QR requires S = ©(n) supersteps, W = O(n?)

o Cholesky-QR2, TSQR, and HR-TSQR require S = ©(log(p))
supersteps
o Cholesky-QR2*: stable so long as k(A) < 1/y/e, W = O(n?)
L = Chol(ATA),Z=AL T L =Chol(Z72),Q=2L ", R=L"L"

o TSQR?: row-recursive divide-and-conquer, W = O(n? log(p))

o] - [R] e m-an( By o= [ g

o TSQR-HR®: TSQR with Householder-reconstruction, W = O(n? log(p))

4Yamamoto, Nakatsukasa, Yanagisawa, Fukaya 2015

Demmel, Grigori, Hoemmen, Langou 2012
GBaIIard, Demmel, Grigori, Jacquelin, Nguyen, S. 2014
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QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization

@ algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout,
generally achieve W = O(n?/,/p) cost

o Tiskin's 3D QR algorithm achieves W = O(n?/p?/3) communication

@ however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

7Tiskin 2007, “Communication-efficient generic pairwise elimination”
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Communication-avoiding rectangular QR

For A € R™*" existing algorithms are optimal when m = nand m > n

@ cases with n < m < np underdetermined equations are important
@ new algorithm

o subdivide p processors into m/n groups of pn/m processors
o perform row-recursive QR (TSQR) with tree of height log,(m/n)

e compute each tree-node elimination QR( {gl} ) using Tiskin's QR with
2
pn/m or more processors

@ note: interleaving rows of R; and Ry gives a slanted panel!

@ obtains ideal communication cost for any m, n, generally

(C
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Cholesky-QR2 for rectangular matrices

Cholesky-QR2 with 3D Cholesky provides a simple 3D QR algorithm for
well-conditioned rectangular matrices

=

IIReduce contiguous  AllReduce altemating Broasicast along
aroups of size ¢ Groups of size dfc depth

s

c 7
Vo
c
[adwd
B=R'R
Q=AR?

D/C simultaneous 3D Cholesky D/C simultaneous 3D Matrix Multiplications
Factorizations on cubes of dimension C on cubes of dimension C

work by Edward Hutter (PhD student at UIUC)
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Tridiagonalization

Reducing the symmetric matrix A € R"*" to a tridiagonal matrix
T=Q'AQ

via a two-sided orthogonal transformation is most costly in diagonalization
@ can be done by successive column QR factorizations
T=Q] --QIAQ:---Q,
N——

N—_——
Q7 Q

@ two-sided updates harder to manage than one-sided
@ can use n/b QRs on panels of b columns to go to band-width b+ 1

@ b =1 gives direct tridiagonalization
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Multi-stage tridiagonalization

Writing the orthogonal transformation in Householder form, we get

(1-UTunH"A(1-UTU)=A-UVT —VU’
Q’ Q

where U are Householder vectors and V is

1
Vi=TU" +=T"U" AU TUT
2 S~~~

challenge

@ when performing two-sided updates, computing AU dominates cost

e if b=1, U is a column-vector, and AU is dominated by vertical
communication cost (moving A between memory and cache)

@ idea: reduce to banded matrix (b >> 1) first®

8Auckentha|er, Bungartz, Huckle, Kramer, Lang, Willems 2011
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Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded
matrix to a tridiagonal one

o fewer nonzeros lead to lower computational cost, F = O(n?b/p)
@ however, transformations introduce fill/bulges

@ bulges must be chased down the band®

J X

“update

%

@ communication- and synchronization-efficient 1D SBR algorithm
known for small band-width'®

9Lang 1993; Bischof, Lang, Sun 2000
Ballard, Demmel, Knight 2012
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Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization

o implemented in ELPA, can outperform ScaLAPACK!!

o with n=n/,/p, 1D SBR gives W = O(n?/,/p), S = O(/plog?(p))*?
New results!3: many-stage tridiagonalization

o use O(log(p)) intermediate band-widths to achieve W = O(n?/p?/3)

@ leverage communication-efficient rectangular QR with processor groups

‘ yor

yor

A
V,"

VT
B, ?

u© |or o
QR B
U, U, U 2
U;

@ 3D SBR (each QR and matrix multiplication update parallelized)

Auckenthaler, Bungartz, Huckle, Kramer, Lang, Willems 2011
lzBaIIard, Demmel, Knight 2012
135., Ballard, Demmel, Hoefler 2017
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Symmetric eigensolver results summary

Algorithm w \ Q \ S ‘
ScaLAPACK n?/\/p n3/p nlog(p)

ELPA n?/\/p - nlog(p)
two-stage + 1D-SBR | n?/,/p | nlog(n)/\/P | /P(log?(p) -+ log(n))
many-stage n?/p?3 | n?logp/p*/3 p?/3log? p

@ costs are asymptotic (same computational cost F for eigenvalues)
e W — horizontal (interprocessor) communication
e Q — vertical (memory—cache) communication excluding W + F /v H

@ S — synchronization cost (number of supersteps)
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Conclusion

Summary of contributions

@ communication-efficient QR factorization algorithm
e optimal communication cost for any matrix dimensions
e variants that trade-off some accuracy guarantees for performance
@ communication-efficient symmetric eigensolver algorithm
o reduce matrix to successively smaller band-width
e uses concurrent executions of 3D matrix multiplication and 3D QR
Practical implications

@ ELPA demonstrated efficacy of two-stage approach, our work
motivates 3+ stages

@ partial parallel implementation is competitive but no speed-up
Future work

@ back-transformations to compute eigenvectors in less computational
complexity than F = O(n*log(p)/p)
@ QR with column pivoting / low-rank SVD

Householder Symposium XX
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Communication-efficient matrix multiplication

2.5D MM on BG/P (n=65,536) Matrix multiplication strong scaling on Mira (BG/Q)
100 T T 200F o T o T T 1
| 2.5D SUMMA —+— 2.5D MM n=65,536 —¥%— | i
e 2D SUMMA 2D MM n=65,536 i
x ScalLAPACK PDGEMM —&—
g;. 80 S e o
2 g
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12X speed-up, 95% reduction in comm. for n = 8K on 16K nodes of BG/P
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Communication-efficient QR factorization

@ Householder form can be reconstructed quickly from TSQR'*
Q=1-YTY' = LU(I— Q) — (Y, TY")
@ Householder aggregation yields performance improvements

QR weak scaling on Cray XE6 (n=15K to n=131K)

20 [ Two-Level CAQR-HR —— T
Elemental QR :
ScalAPACK QR —&— -

Teraflops
>
T

0 == i i i
144 288 576 1152 2304 4608 9216
#cores

14Ba|lard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014
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Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the n x n diamond DAG,!®

F-S=Q(n)

L D

Dependency chain P Monochrome dependency intervals ~ Multicolored dependency intervals
We generalize this idea'®
@ additionally consider horizontal communication

o allow arbitrary (polynomial or exponential) interval expansion

1 papadimitriou, Ullman, SIAM JC, 1987
165., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Tradeoffs involving synchronization
We apply tradeoff lower bounds to dense linear algebra algorithms,
represented via dependency hypergraphs:!’

For triangular solve with an n x n matrix,

Frrsv - Strsv = Q (n°)

For Cholesky of an n x n matrix,

FeroL - SéroL = 2 (n®) WeoL - Scror = 2 (")

175., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)
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Communication-efficient LU factorization

For any c € [1, p*/3], use cn?/p memory per processor and obtain

Wiy = O(n?//cp), Stu = O(Vep)

LU with tournament pivoting on BG/P (n=65,536)
100

! ideal scaling ------
25D LU —+—

; 2D L
80 [~ : ScaLAPACK PDGETRF —&— |

Percentage of machine peak

0
256 512 1024 2048
#nodes

o LU with pairwise pivoting'® extended to tournament pivoting!®

o first implementation of a communication-optimal LU algorithm'®

18 iskin, FGCS, 2007
195., Demmel, Euro-Par, 2011
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