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Laboratory for Parallel Numerical Algorithms

Recent/ongoing research topics
(*-covered today)

parallel matrix computations

matrix factorizations
eigenvalue problems
preconditioners

tensor computations

tensor decomposition*
sparse tensor kernels
tensor completion

simulation of quantum systems

tensor networks*
quantum chemistry*
quantum circuits*

fast bilinear algorithms

convolution algorithms
tensor symmetry* http://lpna.cs.illinois.edu
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Definitions and Overview

A tensor of order N has N modes and dimensions s× · · · × s
Two or more tensors can be contracted together in various ways,
generalizing matrix/vector products, Hadamard products, etc.

Tensors decompositions represent a tensor as a contraction of smaller
ones (e.g., low-rank matrix factorization)

Tensor network methods seek to solve eigenvalue/optimization
problems with a tensor that is already decomposed

In the first part of this talk, we look at where tensor contractions and
decompositions arise in quantum chemistry methods

In the second part of this talk, we switch focus to tensor networks
and their application both to electronic structure methods and
quantum circuit simulation
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Tensor Decompositions

Canonical polyadic (CP) tensor
decomposition1

tijk =

R∑
r=1

airbjrckr

1D tensor network / Matrix
product state (MPS) / tensor
train (TT) decomposition

tijk =
∑
r

∑
s

airbrjscsk

2D tensor network / projected
entangled pair state (PEPS)

1
T.G. Kolda and B.W. Bader, SIAM Review 2009
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Time-Independent Manybody Schrödinger Equation

To model molecules and solids at a quantum level, we seek low
energy configurations in an exponential state space by optimizing over
an appropriate subspace

Given Hamiltonian operator H, seek wavefunction ψ to minimze

E = 〈ψ|H|ψ〉

H is typically represented as a sum of local operators H1, . . . ,Hm

where m = O(poly(n))

H =

m∑
i=1

Hi

where Hi|ψ〉 transforms one or two of qubits/particles in ψ

For simple spin-system models m = O(n), for electronic structure
calculations (finding ground state of system of fermions) with a basis
set of size O(n), m = O(n4)
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Wavefunction Methods in Electronic Structure

For n-particle systems, the Hamiltonian is described by

H = − 1

2m

n∑
i=1

∇2
i +

n∑
i=1

V (xi) +

n∑
i=1

∑
j<i

U(xi, xj)

The one-particle component V (xi) encodes interactions between
electrons and atoms

The two-particle component U(xi, xj) encodes electron–electron
interactions, specifically U(xi, xj) = −1/|xi − xj |
Various methods define a subspace by imposing a wavefunction ansatz

ψDFT(x1, . . . , xn) = ψ1(x1) · · ·ψn(xn) (Density Functional Theory)

ψHF(x1, . . . , xn) =
1√
n!

det(ψ1(x1), . . . , ψn(xn)) (Hartree-Fock)

ψCCSD(x1, . . . , xn) = eT1+T2 |ψHF〉 (Coupled Cluster)
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Electron-Reupsion Integral (ERI) Tensor

Calculating the expectation value of the two-electron operator
Hartree-Fock wavefunction ansatz, we obtain

〈ψ|U |ψ〉 = 1

n(n− 1)

n∑
i 6=j
〈ψi(xi)ψj(xj)|U(xi, xj)|ψi(xi)ψj(xj)〉

−〈ψi(xi)ψj(xj)|U(xi, xj)|ψj(xi)ψi(xj)〉

Given a set of orthogonal basis functions χ1(x), . . . , χk(x), so each
single-particle basis function is ψi(x) =

∑k
j=1 cikχj(x)

〈ψ|U |ψ〉 = 1

n(n− 1)

n∑
i 6=j

∑
k,l

cikcjl[(ik|jl)− (il|jk)]

where (ij|kl) =〈χ∗i (x)χ∗j (x)|U(x, x′)|χk(x′)χl(x′)〉 is the ERI tensor

The ERI tensor has permutational symmetry
(ij|kl) = (kl|ij) = (kl|ji) = . . . and generally has group symmetries
due to conservation laws, which permit reduced representations/cost
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Hartree-Fock Methods

The Hartree-Fock method computes the best coefficients cik and
obtains ψHF by iterative minimization via the Self Consistent Field
(SCF) procedure

Hartree-Fock is a mean-field approximation of the potential that takes
account electron exchange due to antisymmetrization, but does not
model excitations/correlation

Coupled-cluster methods account for these effects via systematic
approximation that also satisfies size extensivity (energy scales
correctly with number of non-interacting systems)
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Coupled-Cluster Methods

The singles and double (CCSD) method optimizes amplitude tensors
T1 (order 2) and T2 (order 4), so as to minimize

E ≈ 〈ψCCSD|H|ψCCSD〉 where ψCCSD = eT1+T2 |ψHF〉

Expanding eT1+T2 and contracting with the two-electron integral
tensor, higher-order terms in T1 and T2 can be shown to vanish, and
the remaining terms are at most as expensive as a contraction of two
order 4 tensors into an order 4 tensor, which costs O(n6)
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Density Fitting and Tensor Hypercontraction

The cost of CCSD can be reduced to O(n5) by density fitting, which
is a truncated Cholesky decomposition of the ERI tensor

(ab|ij) =
∑
p

dabpd
∗
ijp

The tensor hypercontraction (THC) method factorizes the density
fitting tensor as

dijp =
∑
r

xirxjrypr

which is a canonical polyadic (CP) decomposition with a repeating
factor matrix X
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CP Decomposition for Tensor Hypercontraction

The tensor hypercontraction (THC) method factorizes the density
fitting tensor as

dijp =
∑
r

xirxjrypr

which is a canonical polyadic (CP) decomposition with a repeating
factor matrix X

When the THC factorization is also applied to the amplitude tensor,
CCSD scaling can be theoretically further reduced to O(n4)

The CP decomposition for THC can be obtained by decomposing D
or by using a spatial grid

While more effective, the latter approach does not extend to
adaptations of THC to periodic systems
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Library for Massively-Parallel Tensor Computations

Cyclops Tensor Framework1 sparse/dense generalized tensor algebra

Cyclops is a C++ library that distributes each tensor over MPI

Used in chemistry (PySCF, QChem)2, quantum circuit simulation
(IBM/LLNL)3, and graph analysis (betweenness centrality)4

Summations and contractions specified via Einstein notation

E["aixbjy"] += X["aixbjy"] - U["abu"]*V["iju"]*W["xyu"]

Best distributed contraction algorithm selected at runtime via models

Support for Python (numpy.ndarray backend), OpenMP, and GPU

Simple interface to core ScaLAPACK matrix factorization routines

1https://github.com/cyclops-community/ctf
2

E.S., D. Matthews, J. Hammond, J.F. Stanton, J. Demmel, JPDC 2014
3

E. Pednault, J.A. Gunnels, G. Nannicini, L. Horesh, T. Magerlein, E. S., E. Draeger, E. Holland, and R. Wisnieff, 2017
4

E.S., M. Besta, F. Vella, T. Hoefler, SC 2017
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Electronic structure calculations with Cyclops

CCSD up to 55 (50) water molecules with cc-pVDZ
CCSDT up to 10 water molecules with cc-pVDZ
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compares well to NWChem (up to 10x speed-ups for CCSDT)
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Tensor Decompositions

Tensor of order N has N modes and dimensions s× · · · × s

Canonical polyadic (CP) tensor decomposition1

Alternating least squares (ALS) is most widely used method

Monotonic linear convergence

Gauss-Newton method is an emerging alternative

Non-monotonic, but can achieve superlinear convergence rate

1
T.G. Kolda and B.W. Bader, SIAM Review 2009
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Accelerating Alternating Least Squares
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New algorithm: pairwise perturbation (PP)1 approximates ALS

based on perturbative expansion of ALS update

approximation is accurate when ALS updates stagnate

rank R < sN−1 CP decomposition:

ALS sweep cost O(sNR)⇒ O(s2R), up to 33x speed-up Linjian Ma
1

L. Ma, E.S. arXiv:1811.10573
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Regularization and Parallelism for Gauss-Newton
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New regularization scheme1 for Gauss-Newton CP with implicit CG2

Oscillates regularization parameter geometrically
between lower and upper thresholds

Achieves higher convergence likelihood

More accurate than ALS in applications

Faster than ALS sequentially and in parallel Navjot Singh

1
Navjot Singh, Linjian Ma, Hongru Yang, and E.S. arXiv:1910.12331

2
P. Tichavsky, A. H. Phan, and A. Cichocki., 2013
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Permutational Symmetry in Tensor Contractions
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New contraction algorithms reduce cost via permutational symmetry1

Symmetry is hard to use in contraction e.g. y = Ax with A symmetric

For contraction of order s+ v and v + t tensors to produce an order s+ t tensor,
previously known approaches reduce cost by s!t!v!

New algorithm reduces number of products by ω! where ω = s+ t+ v, leads to
same reduction in cost for partially-symmetric contractions

C = AB +BA⇒ cij =
∑
k

[(aij + aik + ajk) · (bij + bik + bjk)]− . . .

1
E.S, J. Demmel, CMAM 2020
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Group Symmetry in Tensor Contractions

New contraction algorithm, irreducible representation alignment uses new reduced

form to handle group symmetry (momentum consrevation, spin, quantum

numbers, etc.) without looping over blocks or sparsity1
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1
collaboration with Yang Gao, Phillip Helms, and Garnet Chan at Caltech, to appear on arxiv, July 2020
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Hamiltonians as Tensor Network Operators

Tensor network methods pose an alternative to Hartree-Fock-based
methods for quantum chemistry
These methods are most natural for lattice spin systems such as the
Heisenberg model and the simpler transverse field Ising model

H =
∑
〈i j〉

JzZiZj +
∑
i

hxXi

where 〈i j〉 denote neighboring sites on a 2D lattice
In the 1D case, 2-qubit operators such as ZiZi+1 can be written as

H = Z ⊗Z ⊗ I ⊗ · · · ⊗ I + I ⊗Z ⊗Z ⊗ I ⊗ · · · ⊗ I + · · ·
In the 1D case, H can be represented as a matrix-product operator
(MPO) with constant bond dimension (rank)

Figure: Tensor diagrams for (a) an MPS, (b) an MPO and (c) a 3× 3 PEPS.
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Density Matrix Renormalization Group (DMRG)

H =Ψ =
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Parallel DMRG with Group Symmetry
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We have recently developed a parallel DMRG code using Cyclops1

compare two approaches to group symmetry

iterate over block-wise contractions
use CTF’s sparse tensor representation

match ITensor efficiency at scale for spin-system, but significantly
lower efficiency for fermionic system with large number of blocks

1collaboration with Ryan Levy and Bryan Clark (UIUC), paper to appear in
proceedings of SC 2020, arXiv preprint to be released July 2020
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Conditioning and Stability of Tensor Networks

DMRG and ALS optimize one tensor at a time relative to an
environment matrix (the contraction of the rest of the tensor network)

Canonical forms ensure that the environment matrix is orthogonal,
minimizing amplification of sitewise approximation error

Our provides a nound on error amplification based on environment
matrix condition number1, hints at alternative approaches to ensure
stability when canonical forms are hard to compute (e.g. for PEPS)

1Yifan Zhang and E.S. arXiv:2001.01191, 2020
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Automatic Generation of Tensor Network Methods

Note similarity between DMRG and alternating least squares for CP
decomposition

Both apply Newton’s method on a sequence of subsets of variables

Automatic differentiation (AD) in principle enables automatic
generation of these methods

However, existing AD tools such as Jax (used by TensorFlow) are
designed for deep learning and are ineffective for more complex tensor
computations

focus purely on first order optimization via Jacobian-vector products
unable to propagate tensor algebra identities such as
(A⊗B)−1 = A−1 ⊗B−1 to generate efficient code
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AutoHOOT: Automatic High-Order Optimization for
Tensors

AutoHOOT1 provides a tensor-algebra centric AD engine

Designed for einsum expressions and alternating minimization
common in tensor decomposition and tensor network methods

Python-level AD is coupled with optimization of contraction order
and caching of intermediates

Generates code for CPU/GPU/supercomputers using high-level
back-end interface to tensor contractions
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1Linjian Ma, Jiayu Ye, and E.S. arXiv:2005.04540, 2020
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Tensor Network State Evolution

We can evolve a tensor network state by Trotterization of a
Hamiltonian with m local terms

e−iHτ =

m∏
j=1

e−iHjτ +O(τ2)

Dynamics may be simulated by time-evolution |ψt+τ 〉 = e−iHτ |ψt〉
Ground state calculation can be done via imaginary time evolution,
|ψi(t+τ)〉 = e−Hτ |ψit〉, maximizing as follows

e−Eτ = max
‖ψ‖2
〈ψ|e−Hτ |ψ〉

which is equivalent to minimizing E and leads to the same
maximizer/minimzer ψ

If Hj is a local (e.g., one/two-site) operator, so is e−iHjτ
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Quantum Circuit Simulation with Tensor Networks

Evolution of tensor network states can also simulate quantum circuits
In fact, a quantum circuit is a direct description of a tensor network1

Why use HPC to (approximately) simulate quantum circuits?
enable development/testing/tuning of larger quantum circuits
understand approximability of different quantum algorithms
quantify sensitivty of algorithms to noise/error
potentially enable new hybrid quantum-classical algorithms

Cyclops utilized to simulate 49-qubit circuits by IBM+LLNL team via
direct contraction2 and by another team from via exact PEPS
evolution/contraction3

1Markov and Shi SIAM JC 2007
2Pednault et al. arXiv:1710.05867
3Guo et al. Phys Rev Letters, 2019
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Tensor Formalism for Quantum Circuits

The state |ψ〉 of a quantum computer with n qubits can be described
by a unit vector in C2n .

By choosing 2n orthonormal basis vectors/states to be denoted as |i〉
with i = i1 · · · in ∈ {0, 1}n, |ψ〉 can be written as

|ψ〉 =
∑

i∈{0,1}n
t
(ψ)
i |i〉

A single qubit gate G(k) acting on the kth qubit gives

|φ〉 = G(k) |ψ〉 ⇒ t
(φ)
i =

1∑
jk=0

g
(k)
ikjk

t
(ψ)
i1···ik−1jkik+1···in

A 2-qubit gate G(k,l) acting on qubits k, l with k < l gives

|φ〉 = G(k,l) |ψ〉 ⇒ t
(φ)
i =

1∑
jk=0

1∑
jl=0

g
(k,l)
ikiljkjl

t
(ψ)
i1···jk···jl···in
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Quantum Circuit Simulation using PEPS1

Near-term quantum architectures mostly connect qubits in a 2D
fashion

Non-local gates can be applied via the use of swap gates (with
corresponding overhead)

2D tensor networks (projected entangles pair states (PEPS)) provide
a natural way to simulate 2D quantum circuits

Same software/algorithms infrastructure is also effective for
(imaginary) time evolution with many Hamiltonians of interest

Gate application and contraction of PEPS can both have exponential
cost in the size of the circuit, so desire effective approximation

1Yuchen Pang, Tianyi Hao, Annika Dugad, Yiqing Zhou, and E.S., to appear in
proceedings of SC 2020, arXiv:2006.15234.
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Approximate Application of Two-Site Operators

Consider application of a two-site operator on neighboring PEPS sites

Simple update (QR-SVD) algorithm:

We provide an efficient distributed implementation of QR-SVD

This operation is an instance of what we’ll refer to as einsumsvd and
QR-SVD is one algorithm/implementation
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Implicit Randomized einsumsvd

The einsumsvd primitive will also enable effective algorithms for
PEPS contraction

An efficient general implementation is to leverage randomized SVD /
orthogonal iteration, which iteratively computes a low-rank SVD by a
matrix–matrix product that can be done implicitly via tensor
contractions
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PEPS Contraction

Exact contraction of PEPS is #P-complete, so known methods have
exponential cost in the number of sites

PEPS contraction is needed to compute expectation values such as
〈ψ|H |ψ〉
Boundary contraction is common for finite PEPS and can be
simplified with einsumsvd
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Computing Expectation Values with PEPS

To compute 〈ψ|H |ψ〉, we could compute each 〈ψ|Hi |ψ〉 and sum

To improve performance, leverage caching of intermediates accross
different expectation values of local operators

2 4 6 8 10 12
Side length of the square PEPS

0

50

100

150

200

250

Ti
m

e 
(m

in
ut

es
)

IBMPS with cache
IBMPS wihout cache

An alternative efficient implementation can be obtained by computing
the expectation value of the time-evolution operator e−iHτ

Caching approach also enables computation of unsummed expectation
values, which are useful for gradients (needed in e.g., Adapt-VQE)
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Koala

We introduce a new library, Koala1, for high-performance simulation
of quantum circuits and time evolution with PEPS

1https://github.com/cyclops-community/koala
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PEPS Benchmark Performance
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Koala achieves good parallel scalability for approxmate gate
application (evolution) and contraction

Approximation can be effective even for adversarially-designed circuits
such as Google’s random quantum circuit model (figure on right)
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PEPS Accuracy for Quantum Simulation
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ITE code achieves improvable accuracy with increased PEPS bond
dimension, but approximation in PEPS contraction is not variational

Variational quantum eigensolver (VQE), which represents a
wavefunction using a parameterized circuit U(θ) and minimizes

〈U(θ)|H |U(θ)〉 ,

also achieves improvable accuracy with higher PEPS bond dimension
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Conclusion

Our research group is developing an ecosystem of algorithms and
software for simulation of quantum systems

This work is relevant to both classical methods for quantum
chemistry and physics, as well as quantum computation
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