
Electronic structure calculations
Tensor contractions
Matrix factorizations

Scalable Numerical Algorithms for Electronic
Structure Calculations

Edgar Solomonik, James Demmel

Department of EECS, UC Berkeley

March 2013

Edgar Solomonik Communication-avoiding parallel algorithms 1/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Outline

1 Electronic structure calculations
Density Functional Theory
Coupled Cluster

2 Tensor contractions
Matrix multiplication
High-dimensional tensor contractions

3 Matrix factorizations
Communication lower bounds
2.5D algorithms

Edgar Solomonik Communication-avoiding parallel algorithms 2/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Collaborators

advising

James Demmel, Katherine Yelick

Numerical linear algebra algorithms

(UC Berkeley) Grey Ballard, Erin Carson, Michael Driscoll,
Evangelos Georganas, Penporn Koanantakool, Nick Knight,
Benjamin Lipshitz, Hong-Diep Nguyen, Oded Schwartz
(Lawrence Berkeley National Laboratory) Aydın Buluç
(INRIA) Mathias Jacquelin, Laura Grigori

Electronic structure calculations

(UT Austin) Devin Matthews
(Argonne National Laboratory) Jeff Hammond
(Lawrence Livermore National Laboratory) Abhinav Bhatele,
Erik Draeger, Todd Gamblin, Martin Schulz

Edgar Solomonik Communication-avoiding parallel algorithms 3/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Electronic structure calculations

Quantum many-body methods

allow study of chemical problems at the quantum level

Attempt to find approximate solutions to the Schrödinger
equation

H|Ψ〉 = E |Ψ〉
Density Functional Theory

The wave-function Ψ is modelled implicitly via a particle
density

Coupled Cluster

The wave-function Ψ is explicitly approximated via expansion
and truncation of an exponential

Edgar Solomonik Communication-avoiding parallel algorithms 4/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Density Function Theory (DFT)

DFT uses the fact that the ground-state wave-function Ψ0 is a
unique functional of the particle density n(~r)

Ψ0 = Ψ[n0]

Since Û = T̂ + V̂ + Û, where T̂, V̂, and Û, are the kinetic,
potential, and interaction contributions respectively,

E [n0] = 〈Ψ[n0]|T̂[n0] + V̂[n0] + Û[n0]|Ψ[n0]〉

DFT assumes Û = 0, and solves the Kohn-Sham equations[
− ~2

2m
∇2 + Vs(~r)

]
φi (~r) = εiφi (~r)

where Vs has a exchange-correlation potential correction,

Vs(~r) = V(~r) +

∫
e2ns(~r ′)

|~r − ~r ′|
d3r ′ + VXC[ns(~r)]

Edgar Solomonik Communication-avoiding parallel algorithms 5/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Density Function Theory (DFT), contd.

The exchange-correlation potential VXC is approximated by DFT,
by a functional which is often system-dependent. This allows the
following iterative scheme

1 Given an (initial guess) n(~r) calculate Vs via Hartree-Fock
and functional

2 Solve (diagonalize) the Kohn-Sham equation to obtain each φi
3 Compute a new guess at n(~r) based on φi

Due to the rough approximation of correlation and exchange DFT
is good for weakly-correlated systems (which appear in solid-state
physics), but suboptimal for strongly-correlated systems.

Edgar Solomonik Communication-avoiding parallel algorithms 6/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Linear algebra in DFT

DFT requires a few core dense linear algebra kernels

Matrix multiplication (of rectangular matrices)

Linear equations solver

Symmetric eigensolver (diagonalization)

We aim to introduce scalable algorithms for these problems and
integrate them into QBox

QBox already uses our matrix multiplication at large scale on
Sequoia

Library versions of factorizations are in development

Edgar Solomonik Communication-avoiding parallel algorithms 7/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Coupled Cluster definition

Coupled Cluster (CC) is a method for computing an approximate
solution to the time-independent Schrödinger equation of the form

H|Ψ〉 = E |Ψ〉,

CC rewrites the wave-function |Ψ〉 as an excitation operator T̂
applied to the Slater determinant |Φ0〉

|Ψ〉 = eT̂|Φ0〉

where T̂ is as a sum of T̂n (the n’th excitation operators)

T̂CCSD = T̂1 + T̂2

T̂CCSDT = T̂1 + T̂2 + T̂3

T̂CCSDTQ = T̂1 + T̂2 + T̂3 + T̂4

Edgar Solomonik Communication-avoiding parallel algorithms 8/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Coupled Cluster derivation

To derive CC equations, a normal-ordered Hamiltonian is defined
as the sum of one-particle and two-particle interaction terms

ĤN = F̂N + V̂N

Solving the CC energy contribution can be done by computing
eigenvectors of the similarity-transformed Hamiltonian

H̄ = e−T̂ĤNeT̂

Performing the CCSD truncation T̂ = T̂1 + T̂2 and applying the
Hadamard lemma of the Campbell-Baker-Hausdorff formula,

H̄ = ĤN + [ĤN , T̂1] + [ĤN , T̂2] +
1

2
[[ĤNT̂1], T̂1] . . .

which simplifies to

H̄ = ĤN + ĤNT̂1 + ĤNT̂2 + ĤNT̂2
1 + . . .

Edgar Solomonik Communication-avoiding parallel algorithms 9/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Density Functional Theory
Coupled Cluster

Coupled Cluster equations

Left projecting the eigenvector equation, we can obtain an explicit
formula for the CC energy via Wick contraction

ECCSD−E0 = 〈Φ0|H̄|Φ0〉 =
∑
ia

fiatai +
1

4

∑
abij

〈ij ||ab〉tabij +
1

2

∑
aibj

〈ij ||ab〉tai tbj

The tensor amplitude equations are derived in a similar fashion but
involve many more terms

0 = 〈Φa
i |H̄|Φ0〉 = fai −

∑
kc

fkctci tak + . . .

0 = 〈Φab
ij |H̄|Φ0〉 = 〈ab||ij〉+

∑
bj

〈ja||bi〉tbj + . . .

These equations then need to be factorized into two-tensor
contractions.

Edgar Solomonik Communication-avoiding parallel algorithms 10/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Matrix multiplication

For square n-by-n matrix A, B, and C, compute

cij =
n∑

k=1

aik · bkj

Edgar Solomonik Communication-avoiding parallel algorithms 11/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Communication lower bounds for matrix multiplication

In 1981, Hong and Kung derived a lower-bound on the sequential
communication cost of matrix multiplication, given cache size M,

Wseq = Ω

(
n3

M1/2

)
Sseq = Ω

(
n3

M3/2

)
.

In 2004, Irony, Tiskin, and Toledo, extended this to the case of p
processors with local memory of size M

Wpar = Ω

(
n3

p ·M1/2

)
Spar = Ω

(
n3

p ·M3/2

)
.

These bounds hold for M ∈ [3n2/p, 3n2/p2/3].

Edgar Solomonik Communication-avoiding parallel algorithms 12/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Parallel matrix multiplication algorithms

Standard ’2D’ algorithms ([Cannon 69], [GW 97], [ABGJP 95]) assume
M = 3n2/p and block A, B, and C. on a

√
p-by-

√
p processor grid.

They have a cost of

W2D = O

(
n2

√
p

)
’3D’ algorithms ([Bernsten 89], [ACS 1990], [ABGJP 95], [MT 99])
assume M = 3n2/p2/3 and block the computation on a p1/3-by-p1/3-p1/3

processor grid, yielding

W3D = O

(
n2

p2/3

)
’2.5D’ algorithms ([MT 99], [SD 2011]) generalize this and, for any
c ∈ [1, p1/3] attain the lower bound with memory usage M = cn2/p,

W2.5D = O

(
n2

√
cp

)
Edgar Solomonik Communication-avoiding parallel algorithms 13/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

2.5D matrix multiplication

[McColl and Tiskin 99],
[Solomonik and Demmel 2011]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

O(n3/p) flops

O(n2/
√

c · p) words moved

O(
√

p/c3) messages

O(c · n2/p) bytes of memory

Edgar Solomonik Communication-avoiding parallel algorithms 14/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

2.5D MM on BG/P (n=65,536)

2.5D SUMMA
2D SUMMA

ScaLAPACK PDGEMM

Edgar Solomonik Communication-avoiding parallel algorithms 15/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Strong scaling matrix multiplication

 0

 20

 40

 60

 80

 100

8192 131072

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

n

Matrix multiplication on 16,384 nodes of BG/P

12X faster

2.7X faster

Using 16 matrix copies

2D MM
2.5D MM

Edgar Solomonik Communication-avoiding parallel algorithms 16/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

2.5D matrix multiplication on BG/Q

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

256 512 1024 2048 4096 8192 16384

Te
ra

flo
ps

#nodes

BG/Q matrix multiplication

Cyclops TF
Scalapack

Edgar Solomonik Communication-avoiding parallel algorithms 17/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Tensor contractions

We define a tensor contraction between A ∈ R⊗k , B ∈ R⊗l into
C ∈ R⊗m as

ci1...im =
∑

j1...jk+l−m

ai1...im−l j1...jk+l−m
· bj1...jk+l−mim−l+1...im

Tensor contractions reduce to matrix multiplication via index
folding (let [ijk] denote a group of 3 indices folded into one),

c[i1...im−l ],[im−l+1...im] =∑
[j1...jk+l−m]

a[i1...im−l ],[j1...jk+l−m] · b[j1...jk+l−m],[im−l+1...im]

so here A, B, and C can be treated simply as matrices.

Edgar Solomonik Communication-avoiding parallel algorithms 18/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Tensor symmetry

Tensors can have symmetry e.g.

a(ij)k = a(ji)k or a(ij)k = −a(ji)k

I am introducing more dubious notation, by denoting symmetric
groups of indices as (ab...). We now might face contractions like

c(ij)kl =
∑
pqr

a(ij)(pq) · b(pqk)(rl)

where the computational graph G can be thought of as a 7D tensor
with entries g(ij)kl(pq)r = (c(ij)kl , a(ij)(pq), b(pqk)(rl)). There are two
things that can happen to symmetries during a contraction:

preserved, e.g. g(ij)kl(pq)r = g(ji)kl(pq)r

broken, e.g. b(pqk)(rl) = b(pqk)(lr) but g(ij)kl(pq)r 6= g(ij)kr(pq)l

Edgar Solomonik Communication-avoiding parallel algorithms 19/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Preserved symmetries in contractions

When a d-dimensional symmetry is preserved, a factor of d! can be
saved in memory and flops. This is simple to achieve, since the
d-dimensional index group can be folded into one index in a
packed layout, for instance

ckl = 2 ·
∑
[i<j]

ak[(i<j)] · b[(i<j)]l

Since we are folding the packed index, the iteration space of this
contraction is in effect equivalent to matrix multiplication, and
therefore easy to handle.

Edgar Solomonik Communication-avoiding parallel algorithms 20/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Broken symmetries in contractions

When a symmetry is broken, no flops can be saved with respect to
unpacking. However, memory can be saved as the tensors can
remain stored in packed format. Matrix multiplication of two
symmetric tensors features a broken symmetry, which can be
computed in packed layout as

ckl =
∑
i

a(k<i) ·b(i<l) + a(i<k) ·b(i<l) + a(k<i) ·b(l<i) + a(i<k) ·b(l<i)

This requires four matrix multiplications, but each accesses only
the lower triangle of the matrices, so only that portion need be
stored.
If data replication is correctly utilized in the parallel algorithm
unpacking and doing permutations of contractions have equivalent
bandwidth costs.

Edgar Solomonik Communication-avoiding parallel algorithms 21/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Lower bounds for tensor contractions

Let the size of the index space spanned by the 3 tensors be G . Let
the preserved symmetry factor be sp. We conjecture the following
lower-bounds

W = Ω

(
G/sp
M1/2

)
S = Ω

(
G/sp
M3/2

)
.

Edgar Solomonik Communication-avoiding parallel algorithms 22/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Cyclops Tensor Framework (CTF) approach to contractions

CTF is a massively-parallel framework for tensor contractions

a cyclic parallel decomposition preserves symmetric structure

a single transpose/redistribution for each tensor in a
contraction

preserved symmetries are folded

for broken symmetries, unfold if enough memory, otherwise
perform all permutations

optimizations: threaded transposes, topology-aware mapping,
replication (2.5D)

Edgar Solomonik Communication-avoiding parallel algorithms 23/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

3D tensor mapping

Edgar Solomonik Communication-avoiding parallel algorithms 24/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

CCSD code using our domain specific language

Edgar Solomonik Communication-avoiding parallel algorithms 25/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Comparison with NWChem on Cray XE6

CCSD iteration time on 64 nodes of Hopper:

system # electrons # orbitals CTF NWChem

w5 25 205 14 sec 36 sec

w7 35 287 90 sec 178 sec

w9 45 369 127 sec -

w12 60 492 336 sec -

On 128 nodes, NWChem completed w9 in 223 sec, CTF in 73 sec.

Edgar Solomonik Communication-avoiding parallel algorithms 26/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Blue Gene/Q up to 1250 orbitals, 250 electrons

 100

 200

 300

 400

 500

 600

512 1024 2048 4096 8192

Te
ra

flo
ps

#nodes

CCSD weak scaling on Mira (BG/Q)

Cyclops TF

Edgar Solomonik Communication-avoiding parallel algorithms 27/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Matrix multiplication
High-dimensional tensor contractions

Coupled Cluster efficiency on Blue Gene/Q

 0

 0.2

 0.4

 0.6

 0.8

 1

512 1024 2048 4096 8192

Fr
ac

tio
n 

of
 p

ea
k 

flo
ps

#nodes

CCSD weak scaling on Mira (BG/Q)

Cyclops TF

Edgar Solomonik Communication-avoiding parallel algorithms 28/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Communication lower bounds
2.5D algorithms

A general memory-size-based lower-bound

The matrix multiplication lower bound has been extended to LU,
Cholesky, QR, and the SVD of n-by-n matrices, as well as the
all-pairs-shortest-paths problem for a graph with n nodes [BDHS
2011]

W = Ω

(
n3

p ·M1/2

)
S = Ω

(
n3

p ·M3/2

)
.

Edgar Solomonik Communication-avoiding parallel algorithms 29/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Communication lower bounds
2.5D algorithms

Tighter latency lower-bounds for factorizations

Using expansion analysis of dependency graphs, we can prove that
for LU, Cholesky, QR, and the SVD of n-by-n matrices, as well as
the all-pairs-shortest-paths problem for a graph with n nodes

F · S2 = Ω(n3) W · S = Ω(n2),

and for a triangular solve

F · S2 = Ω(n2) W · S2 = Ω(n2).

For k-step Krylov subspace methods on a d-dimensional stencil, we
also have

F · Sd = Ω(kd+1) W · Sd−1 = Ω(kd).

These lower-bounds are independent of the number of processors!

Edgar Solomonik Communication-avoiding parallel algorithms 30/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Communication lower bounds
2.5D algorithms

Summary of theoretical results for 2.5D algorithms

A comparison between asymptotic communication cost in
ScaLAPACK (SCL) and in 2.5D algorithms (log(p) factors
suppressed). All matrices are n-by-n. For 2.5D algorithms,
c ∈ [1, p1/3], M = O(c · n2/p)

problem lower bound 2.5D lat 2.5D bw SCL lat SCL bw

MM W = Ω(n2/
√

cp)
√

p/c3 n2/
√

pc
√

p n2/
√

p
Cholesky W · S = Ω(n2)

√
pc n2/

√
pc

√
p n2/

√
p

LU W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p
QR W · S = Ω(n2)

√
pc n2/

√
pc n n2/

√
p

sym eig W · S = Ω(n2)
√

pc n2/
√

pc n n2/
√

p

Edgar Solomonik Communication-avoiding parallel algorithms 31/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Communication lower bounds
2.5D algorithms

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

p

2.5D LU on BG/P (n=65,536)

2.5D LU (CA-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

Edgar Solomonik Communication-avoiding parallel algorithms 32/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Communication lower bounds
2.5D algorithms

2.5D LU on 65,536 cores

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

Ti
m

e 
(s

ec
)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Edgar Solomonik Communication-avoiding parallel algorithms 33/ 35



Electronic structure calculations
Tensor contractions
Matrix factorizations

Further references

Websites with more information and papers

bebop.cs.berkeley.edu

cs.berkeley.edu/~solomon

Memory-based lower-bounds

see [BDHS] (SIAM J. Mat. Anal. Appl. 2011)

2.5D numerical linear algebra algorithms

MM, Cholesky, and LU see [SD] (EuroPar 2011 and SC 2011)
APSP see [SBD] (IPDPS 2013)
2.5D+overlap see [GGSTY] (SC 2012)
1.5D molecular dynamics see [DGKSY] (IPDPS 2013)

Cyclops Tensor Framework

see [SMHD] (IPDPS 2013)

Latency-tradeoff lower-bounds (paper in preparation)

Edgar Solomonik Communication-avoiding parallel algorithms 34/ 35

bebop.cs.berkeley.edu
cs.berkeley.edu/~solomon


Electronic structure calculations
Tensor contractions
Matrix factorizations

Summary and conclusion

We can lower bound bandwidth based on projections and
latency based on dependencies and graph expansion

2.5D algorithms present a communication-optimal algorithm
family for dense linear algebra and some other problems

CTF is a parallel framework for symmetric tensor contractions

Coupled Cluster and Density Functional Theory are electronic
structure calculation methods implemented on top of CTF

Edgar Solomonik Communication-avoiding parallel algorithms 35/ 35



Coupled Cluster formalism

Backup slides

Edgar Solomonik Communication-avoiding parallel algorithms 36/ 35



Coupled Cluster formalism

Dependency bubble

Definition (Dependency bubble)

We consider the expansion of dependencies associated with a path
R = {v1, . . . vn}, where each vi , for i ∈ [2, n] has a dependency
path from vi−1. We define the dependency bubble around P as
B(R) ⊂ V where each vertex ui ∈ B(R) lays on a dependency
path, {w , . . . ui . . . z} in G where w , z ∈ R. This bubble
corresponds to vertices which must be computed between the
computations of v1 and vn (the start and end of the path).

Edgar Solomonik Communication-avoiding parallel algorithms 37/ 35



Coupled Cluster formalism

Latency lower bound based on bubble size

Conjecture (Bubble Neighborhood Theorem)

Consider a computation G which has a dependency path R, and
any consecutive subsequence R ⊂ P has a dependency bubble
B(R). Given a lower bound on the size of the neighborhood of the
bubble |N(B(R))| = Ω(η(|R|)), where η(b) = bk for any
b ∈ [1, |P|], the following bandwidth W and latency cost S must
be incurred by some processor to compute G ,

S = Ω(|P|/b), W = Ω(η(b)).

Edgar Solomonik Communication-avoiding parallel algorithms 38/ 35



Coupled Cluster formalism

Dependency bubbles

processor 1
processor 2
processor 3 Chain of bubbles

Edgar Solomonik Communication-avoiding parallel algorithms 39/ 35



Coupled Cluster formalism

Proof of Bubble Neighborhood Theorem

Sketch of Proof

Let the length of the longest consecutive subsequence of R
computed by a single processor be b. That process must
communicate the neighborhood around R, therefore

W = Ω(η(b)).

Further, there must be S = Ω(|P|/b) synchronizations in the
computation of R, since no chunk of size more than b is computed
sequentially.

Edgar Solomonik Communication-avoiding parallel algorithms 40/ 35



Coupled Cluster formalism

Example: solution to system of linear equations

Consider solving for x where L is lower-triangular in

yi =
n∑
j≤i

lij · xj .

Define vertices corresponding to computations as vij = (lij , yi ) in
addition to input vertices corresponding to elements of L and y .
We can use the concept of the dependency bubble to prove the
following conjecture

Conjecture (Latency-bandwidth Trade-off in TRSM)

The parallel computation of x = L\y where L is a lower-triangular
n-by-n matrix, must incur latency cost S and bandwidth cost W ,
such that

W · S2 = Ω(n2)

Edgar Solomonik Communication-avoiding parallel algorithms 41/ 35



Coupled Cluster formalism

TRSM latency lower bound

Sketch of Proof

We consider the dependency bubble formed along any dependency
path R = {vjj , . . . vkk}, which corresponds to the divide operations
which compute xj through xk . The dependency bubble B(R)
formed by this path includes vertices vac for {a, c ∈ [j , k], a ≥ c}.
Each vac has a unique neighbor of the input graph lac , therefore
the neighborhood growth around B(R), is lower bound by
|N(B(R))| = Ω(η(|R|) where

η(b) = Ω(b2)

By the Bubble Neighborhood Theorem we have S = Ω(n/b),
W = Ω(b2)

W · S2 = Ω(n2).

Edgar Solomonik Communication-avoiding parallel algorithms 42/ 35



Coupled Cluster formalism

Dependency bubble expansion

Recall that a balanced vertex separator Q of a graph G = (V ,E ),
splits V − Q = W1 + W2 so that min(|W1|, |W2|) ≥ 1

4 |V | and
E = W1 × (Q + W1) + W2 × (Q + W2).

Definition (Dependency bubble cross-section expansion)

If B(R) is the dependency bubble formed around path R, the
bubble cross-section expansion, E (R) is the minimum size of a
balanced vertex separator of B(R).

Edgar Solomonik Communication-avoiding parallel algorithms 43/ 35



Coupled Cluster formalism

General latency lower-bound based on bubble expansion

Conjecture (Bubble Expansion Theorem)

Let P be a dependency path in G , such that any subsequence
R ⊂ P, has bubble cross-section expansion E (R) = Ω(ε(|R|)) and
bubble size |B(R)| = Ω(σ(|R|)), where ε(b) = bd1 ,and σ(b) = bd2

for positive integers d1, d2 The bandwidth and latency costs of any
parallelization of G must obey the relations

F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b)

for all b ∈ [1, |P|].

Edgar Solomonik Communication-avoiding parallel algorithms 44/ 35



Coupled Cluster formalism

Dependency bubbles

processor 1
processor 2
processor 3 Chain of bubbles

Edgar Solomonik Communication-avoiding parallel algorithms 45/ 35



Coupled Cluster formalism

Proof of general latency lower bound

Definition

A parallelization corresponds to a coloring of the vertices, Let
V = ∪Vi be a disjoint union of sets Vi where process i computes
vertices Vi . Define Ri inductively as the smallest consecutive
subsequence of Ri = P − ∪i−1j=1Rj , so that

some process pi ∈ {1, . . . p} computes the first entry of Ri

process pi computes |Vpi ∩ B(Ri )| ≥ 1
4 |B(Ri )| elements and

does not compute |B(Ri )− Vpi | ≥ 1
2 |B(Ri )| elements

Due to load balance |
∑

i Rj | = Ω(|P|).

Edgar Solomonik Communication-avoiding parallel algorithms 46/ 35



Coupled Cluster formalism

Proof of general latency lower bound

Sketch of Proof

To compute each B(Ri ) at least one synchronization is required.
Further, any communication schedule for Vpi ∩ B(Ri ) must
correspond to a set Q of vertices (”communicated values”) which
separate Vpi ∩ B(Ri ) from Vpi − B(Ri ). Therefore, Q corresponds
to a balanced vertex separator on B(Ri ),

F = Ω

(∑
i

σ(|Ri |)

)
, W = Ω

(∑
i

ε(|Ri |)

)
.

These costs are minimized when each subsequence Ri is of the
same length b, therefore
F = Ω(σ(b) · |P|/b), W = Ω(ε(b) · |P|/b), S = Ω(|P|/b).

Edgar Solomonik Communication-avoiding parallel algorithms 47/ 35



Coupled Cluster formalism

Example: LU factorization

We can use bubble expansion to prove better latency lower bounds
for LU, as well as Cholesky, and QR factorizations. LU factorization
of square matrices gives a cubic DAG vijk = (lik , ukj), where

aij =
∑

k≤min(i ,j)

lik · ukj .

Conjecture (Latency-bandwidth Trade-off in LU Factorization)

The parallel computation of lower-triangular L and upper-triangular
U such that A = LU where all matrices are n-by-n, must incur
flops cost F , latency cost S, and bandwidth cost W , such that

W · S = Ω(n2) and F · S2 = Ω(n3)

Edgar Solomonik Communication-avoiding parallel algorithms 48/ 35



Coupled Cluster formalism

LU latency lower bound

Sketch of Proof

We consider the dependency bubble B(R) formed around any path
R = {vjjj , . . . vkkk}, where each entry viii corresponds to the divide
operation used to compute lii . We see that |B(R)| = Ω(|R|)
vertices, for η(b) = b3, which are vacd for a, c, d ∈ [j , k]. Each
such bubble has a smallest separator size of E (R) = Ω(ε(|R|))
where ε(b) = b2. By application of the Bubble Expansion
Theorem, we then get that for any b

F = Ω(b2 · n), W = Ω(b · n), S = Ω(n/b)

therefore
W · S = Ω(n2) and F · S2 = Ω(n3)

Edgar Solomonik Communication-avoiding parallel algorithms 49/ 35



Coupled Cluster formalism

Krylov subspace methods

Definition (Krylov subspace methods)

Compute Akx , where A typically corresponds to a sparse graph.

Conjecture

To compute Akx, where A corresponds to a 3d -point stencil, the
bandwidth W and latency S costs are lower-bounded by

F = Ω(k · bd), W = Ω(k · bd−1), S = Ω(k/b),

for any b. We can rewrite these relations as

W · Sd−1 = Ω(kd),

F · Sd = Ω(kd+1).

Edgar Solomonik Communication-avoiding parallel algorithms 50/ 35



Coupled Cluster formalism

Latency lower bound for s-step methods

Sketch of Proof

For n-by-n A based on a d dimensional mesh, we consider the path
P = {xn/2, (Ax)n/2, . . . (Akx)n/2}. The bubble B(R) formed along
a subsequence of length |R| of this path is of size
|B(R)| = Ω(σ(|R|)), where σ(b) = bd+1 (it is all vertices within
b/2 hops in the mesh) and has bubble expansion
E (R) = Ω(ε(|R|)), where ε(b) = Ω(bd) (corresponding to a vertex
separator cut plane). Using the Bubble Expansion Theorem, we
attain,

F = Ω(k · bd), W = Ω(k · bd−1), S = Ω(k/b),

for any b.

Edgar Solomonik Communication-avoiding parallel algorithms 51/ 35



Coupled Cluster formalism

3D recursive non-pivoted LU and Cholesky

A 3D recursive algorithm with no pivoting [A. Tiskin 2002]

Tiskin gives algorithm under the BSP model

Bulk Synchronous Parallel
considers communication and synchronization

We give an alternative distributed-memory adaptation and
implementation

Also, we have a new lower-bound for the latency cost

Edgar Solomonik Communication-avoiding parallel algorithms 52/ 35



Coupled Cluster formalism

2.5D LU strong scaling (without pivoting)

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
er

ce
nt

ag
e 

of
 m

ac
hi

ne
 p

ea
k

#nodes

LU without pivoting on BG/P (n=65,536)

ideal scaling
2.5D LU

2D LU

Edgar Solomonik Communication-avoiding parallel algorithms 53/ 35



Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 54/ 35



Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 55/ 35



Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 56/ 35



Coupled Cluster formalism

2.5D LU factorization with tournament pivoting

PA₀

L
U

L
U

L
₂₀

L₁₀

L
₃₀

L
₄₀

L
U

L
U

L U

L
U

L
₂₀

L
₃₀

L
₄₀

U
pdate

Update

Update

Update

Update

U
pdate

U
pdate

L₀₀
U₀₀

U₀₁

U₀₂

U₀₃

L₃₀

L₁₀
L₂₀

P
L
U

P
L
U

P
L
U

P
L
U

P
L
U P

L
U

P
L
U

P
L
U

PA₃ PA₂ PA₁

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀

U

U

L

L

L₁₀

U₀₁

U₀₁

U₀₁

U₀₁

L₁₀

L₁₀

L₁₀ L₀₀
U₀₀

L₀₀
U₀₀

L₀₀
U₀₀

PA₀

Edgar Solomonik Communication-avoiding parallel algorithms 57/ 35



Coupled Cluster formalism

3D QR factorization

A = Q · R where Q is orthogonal R is upper-triangular

3D QR using Givens rotations (generic pairwise elimination) is
given by [A. Tiskin 2007]

Tiskin minimizes latency and bandwidth by working on
slanted panels

3D QR cannot be done with right-looking updates as 2.5D LU
due to non-commutativity of orthogonalization updates

Edgar Solomonik Communication-avoiding parallel algorithms 58/ 35



Coupled Cluster formalism

3D QR factorization using the YT representation

The YT representation of Householder QR factorization is more
work efficient when computing only R

We give an algorithm that performs 2.5D QR using the YT
representation

The algorithm performs left-looking updates on Y

Householder with YT needs fewer computation (roughly 2x)
than Givens rotations

Edgar Solomonik Communication-avoiding parallel algorithms 59/ 35



Coupled Cluster formalism

3D QR using YT representation

Edgar Solomonik Communication-avoiding parallel algorithms 60/ 35



Coupled Cluster formalism

Latency-optimal 2.5D QR

To reduce latency, we can employ the TSQR algorithm

1 Given n-by-b panel partition into 2b-by-b blocks

2 Perform QR on each 2b-by-b block

3 Stack computed Rs into n/2-by-b panel and recursive

4 Q given in hierarchical representation

Need YT representation from hierarchical Q...

Edgar Solomonik Communication-avoiding parallel algorithms 61/ 35



Coupled Cluster formalism

YT reconstruction

Yamamoto et al.

Take Y to be the first b columns of Q minus the identity

Define T = (I − Q1)−1

Sacrifices triangular structure of T and Y .

Our first attempt

LU(R−A) = LU(R−(I−YTY T )R) = LU(YTY TR) = (Y )·(TY TR)

was unstable due to being dependent on the condition number of
R. However, performing LU on Yamamoto’s T seems to be stable,

LU(I−Q1) = LU(I−(I−Y1TY T
1 )) = LU(Y1TY T

1 ) = (Y1)·(TY T
1 )

and should yield triangular Y and T .

Edgar Solomonik Communication-avoiding parallel algorithms 62/ 35



Coupled Cluster formalism

Cyclic decomposition in CTF

Cyclical distribution is fundamental to CTF, hence the name
Cyclops (cyclic-operations).
Given a vector v of length n on p processors

in a blocked distribution process pi owns
{vi ·n/p+1, . . . v(i+1)·n/p}
in a cyclic distribution process pi owns {vi , v2i , . . . v(n/p)i}

A cyclic distribution is associated with a phase along each
dimension (for the vector above this was p). The main advantage
from this distribution is that each subtensor can retain packed
structure with only minimal padding.
CTF assumes all subtensor symmetries have index relations of the
form ≤ and not <, so in effect, diagonals are stored for
skew-symmetric tensors.

Edgar Solomonik Communication-avoiding parallel algorithms 63/ 35



Coupled Cluster formalism

Blocked vs block-cyclic vs cyclic decompositions

Blocked layout Block-cyclic layout Cyclic layout

Red denotes padding / load imbalanceGreen denotes fill (unique values)

Edgar Solomonik Communication-avoiding parallel algorithms 64/ 35



Coupled Cluster formalism

Sequential tensor contractions

A cyclic distribution provides a vital level of abstraction, because
each subtensor contraction becomes a packed contraction of the
same sort as the global tensor contraction but of smaller size.
Given a sequential packed contraction kernel, CTF can parallelize
it automatically. Further, because each subcontraction is the same,
the workload of each processor is the same. The actual sequential
kernel used by CTF employs the following steps

1 if there is enough memory, unpack broken symmetries

2 perform a nonsymmetric transpose, to make all indices of
non-broken symmetry be the leading dimensions

3 use a naive kernel to iterate though indices with broken
symmetry and call BLAS GEMM for the leading dimensions

Edgar Solomonik Communication-avoiding parallel algorithms 65/ 35



Coupled Cluster formalism

Multidimensional processor grids

CTF supports tensors and processor grids of any dimension
because mapping a symmetric tensor to a processor grid of the
same dimension preserves symmetric structure with minimal
virtualization and padding. Processor grids are defined by

a base grid, obtained from the physical topology or from
factorizing the number of processors

folding all possible combinations of adjacent processor grid
dimensions

Tensors are contracted on higher dimensional processor grids by

mapping an index shared by two tensors in the contraction to
different processor grid dimensions

running a distributed matrix multiplication algorithm for each
such ’mismatched’ index

replicating data along some processor dimensions ’a la 2.5D’

Edgar Solomonik Communication-avoiding parallel algorithms 66/ 35



Coupled Cluster formalism

Our CCSD factorization

Credit to John F. Stanton and Jurgen Gauss

τ abij = tabij +
1

2
Pa
bP i

j t
a
i tbj ,

F̃m
e = f m

e +
∑
fn

vmn
ef t fn ,

F̃ a
e = (1− δae)f a

e −
∑
m

F̃m
e tam −

1

2

∑
mnf

vmn
ef tafmn +

∑
fn

van
ef t fn ,

F̃m
i = (1− δmi )f m

i +
∑
e

F̃m
e tei +

1

2

∑
nef

vmn
ef tefin +

∑
fn

vmn
if t fn ,

Edgar Solomonik Communication-avoiding parallel algorithms 67/ 35



Coupled Cluster formalism

Our CCSD factorization

W̃ mn
ei = vmn

ei +
∑
f

vmn
ef t fi ,

W̃ mn
ij = vmn

ij + P i
j

∑
e

vmn
ie tej +

1

2

∑
ef

vmn
ef τ

ef
ij ,

W̃ am
ie = vam

ie −
∑
n

W̃ mn
ei tan +

∑
f

vma
ef t fi +

1

2

∑
nf

vmn
ef tafin ,

W̃ am
ij = vam

ij + P i
j

∑
e

vam
ie tej +

1

2

∑
ef

vam
ef τ

ef
ij ,

za
i = f a

i −
∑
m

F̃m
i tam +

∑
e

f a
e tei +

∑
em

vma
ei tem +

∑
em

vae
im F̃m

e +
1

2

∑
efm

vam
ef τ

ef
im −

1

2

∑
emn

W̃ mn
ei teamn,

zab
ij = vab

ij + P i
j

∑
e

vab
ie tej + Pa

bP i
j

∑
me

W̃ am
ie tebmj − Pa

b

∑
m

W̃ am
ij tbm + Pa

b

∑
e

F̃ a
e tebij − P i

j

∑
m

F̃m
i tabmj +

1

2

∑
ef

vab
ef τ

ef
ij +

1

2

∑
mn

W̃ mn
ij τ abmn,

Edgar Solomonik Communication-avoiding parallel algorithms 68/ 35



Coupled Cluster formalism

Performance breakdown on BG/Q

Performance data for a CCSD iteration with 200 electrons and
1000 orbitals on 4096 nodes of Mira
4 processes per node, 16 threads per process
Total time: 18 mins
v -orbitals, o-electrons

kernel % of time complexity architectural bounds

DGEMM 45% O(v4o2/p) flops/mem bandwidth

broadcasts 20% O(v4o2/p
√

M) multicast bandwidth

prefix sum 10% O(p) allreduce bandwidth

data packing 7% O(v2o2/p) integer ops

all-to-all-v 7% O(v2o2/p) bisection bandwidth

tensor folding 4% O(v2o2/p) memory bandwidth

Edgar Solomonik Communication-avoiding parallel algorithms 69/ 35


	Electronic structure calculations
	Density Functional Theory
	Coupled Cluster

	Tensor contractions
	Matrix multiplication
	High-dimensional tensor contractions

	Matrix factorizations
	Communication lower bounds
	2.5D algorithms

	Appendix
	Coupled Cluster formalism


