Faster Accurate Sketching for Tensor Networks

Linjian Ma and Edgar Solomonik

LPNA @ CS@ Illinois

Department of Computer Science
University of Illinois at Urbana-Champaign

SIAM CSE
Amsterdam, NL
Talk Overview

 - **problem**: efficiently sketch the (standard) HOOI algorithm for low-rank Tucker decomposition of sparse tensors
 - **results**: algorithms based on randomized range finding, leverage score sampling, and TensorSketch; error bounds and experimental analysis

 - **problem**: if X is represented by a tensor network, choose a tensor network sketch S to minimize cost of sketching (computing SX)
 - **results**: sufficient condition for JL lemma for any tensor network graph, cost-optimal tensor network sketch under this condition

https://linjianma.github.io/
Tensor Diagrams

Tensor diagram: each tensor represented by a vertex, joining edges means contraction

Examples:

- Inner product: $\sum_i a_i b_i$
- Matrix product: $C_{ik} = \sum_j A_{ij} B_{jk}$
- Kronecker/outer product: $T_{ijk} = a_i b_j c_k$
- Khatri-Rao product: $T_{ijkl} = A_{il} B_{jl} C_{kl}$
Tensor Decompositions and Tensor Networks

Tensor network: a set of tensors contracted according to a (hyper)graph

Tensor decomposition: represent a (high-dimensional) tensor with a tensor network

Applications: addressing curse of dimensionality, useful for many tasks in signal processing, machine learning, quantum simulation
Alternating Optimization

CP decomposition

\[\mathcal{T} \approx \sum_{r=1}^{R} a_r \odot b_r \odot c_r \]

- \[\mathcal{T} \in \mathbb{R}^{n \times n \times n} \]
- \(A = [a_1, \ldots, a_R] \in \mathbb{R}^{n \times R} \)

CP-Alternating least squares (CP-ALS)

\[
\min_A \left \| (C \otimes B) A^T - T^{(1)}_T \right \|_F
\]

Tucker decomposition

\[\mathcal{T} \approx X \times_1 A \times_2 B \times_3 C \]

- \[\mathcal{T} \in \mathbb{R}^{n \times n \times n} \]
- \(X \in \mathbb{R}^{R \times R \times R} \)
- \(A, B, C \in \mathbb{R}^{n \times R} \) orthogonal

Higher order orthogonal iteration (HOOI)

\[
\min_{A, X} \left \| (C \otimes B) X^{(1)}_T A^T - T^{(1)}_T \right \|_F
\]

HOOI interpretation: solve a rank-constrained linear least squares problem

\[
\min_{X, \text{rank}(X) = R} \left \| QX - B \right \|_F
\]

Amenable to sketching: rank-constraint \((, Q = C \otimes B \text{ is orthogonal :})\)
Accurately Sketching an Orthogonal Matrix

- Seek random matrix \(S \in \mathbb{R}^{m \times n} \) so that solution to sketched problem

\[
\min_{X, \text{rank}(X)=R} \|SQX - SB\|_F
\]

\[
\hat{X} = (SQ)^+ SB
\]

satisfies \(\|Q\hat{X} - B\|_F \leq (1 + \epsilon)\|QX^* - B\|_F \) relative to the optimal \(X^* \) with probability \(1 - \delta \)

- Using known error bounds on sketching of matrix products, we show
 - leverage score sampling satisfies above with
 \[
m = \tilde{O}(R^{N-1}/(\epsilon^2 \delta))
\]
 - TensorSketch\(^1\) satisfies this with
 \[
m = O((3R)^{N-1}(R^{N-1} + 1/\epsilon^2)/\delta)
\]

\(^1\) O. Malik and S. Becker, 2018
Efficient Sketching for HOOI

Leverage score sampling

- Since $Q = C \otimes B$, leverage scores satisfy
 \[
 l(i-1)n+j(Q) = \|q(i-1)n+j\|_2^2 = \|c_i\|_2^2 \|b_j\|_2^2 = l_i(C)l_j(B)
 \]
 hence we can take products of independent samples of rows of A and B to obtain the leverage-score based distribution of columns of Q

- Since A, B, C are changing, we must sample the tensor for each optimization step

TensorSketch reduces the amount of necessary sampling to 1 round
Sketched HOOI algorithm

Input: Input order N tensor \mathbf{T}, Tucker rank R, number of sweeps I_{max}

Output: $\{\mathbf{X}, A^{(1)}, \ldots, A^{(N)}\}$

For $n \in \{2, \ldots, N\}$ **do**

$A^{(n)} \leftarrow \text{Init-RRF}(T(n), R, \epsilon)$ // Randomized range finder with composite sketch (Gaussian + CountSketch)

Endfor

For $i \in \{1, \ldots, I_{max}\}$ **do**

For $n \in \{1, \ldots, N\}$ **do**

Build the sketching matrix S

$Y \leftarrow ST(n)$ // Can be done outside i loop for TensorSketch

$Z \leftarrow S^{(n)}(A^{(1)} \otimes \ldots \otimes A^{(n-1)} \otimes A^{(n+1)} \otimes \ldots \otimes A^{(N)})$

$X^T(n), A^{(n)} \leftarrow \text{Solve-truncate}(Z, Y, R)$

Endfor

Endfor

Return $\{\mathbf{X}, A^{(1)}, \ldots, A^{(N)}\}$
Cost comparison for order 3 tensor

ALS + TensorSketch (Malik and Becker, NeurIPS 2018)

- Solving for each factor matrix or the core tensor at a time

\[
\min_A \frac{1}{2} \left\| \left(C \otimes B \right) X^{(1)}_T A^T - T^{(1)}_T \right\|^2_F \\
\min_X \frac{1}{2} \left\| \left(C \otimes B \otimes A \right) \text{vec}(X) - \text{vec}(T) \right\|^2_F
\]

<table>
<thead>
<tr>
<th>Algorithm for Tucker</th>
<th>LS subproblem cost</th>
<th>Sketch size (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOOI</td>
<td>(\Omega(\text{nnz}(\mathcal{T})R))</td>
<td>/</td>
</tr>
<tr>
<td>ALS + TensorSketch</td>
<td>(\tilde{O}(knR + kR^3))</td>
<td>(O((R^2/\delta) \cdot (R^2 + 1/\epsilon)))</td>
</tr>
<tr>
<td>HOOI + TensorSketch</td>
<td>(O(knR + kR^4))</td>
<td>(O((R^2/\delta) \cdot (R^2 + 1/\epsilon^2)))</td>
</tr>
<tr>
<td>HOOI + leverage scores</td>
<td>(O(knR + kR^4))</td>
<td>(O(R^2/(\epsilon^2 \delta)))</td>
</tr>
</tbody>
</table>
Experiments: Tensors with Spiked Signal

(a) 5 sweeps, sample size $16R^2$

- $\mathbf{T} = \mathbf{T}_0 + \sum_{i=1}^{5} \lambda_i a_i \circ b_i \circ c_i$, each a_i, b_i, c_i has unit 2-norm, $\lambda_i = 3 \frac{\|\mathbf{T}_0\|_F}{i^{1.5}}$

- Leading low-rank components obey the power-law distribution

- Tensor size $200 \times 200 \times 200$, $R = 5$

- TS-ref: (Malik and Becker, NeurIPS 2018)
Experiments: CP decomposition

- $\mathbf{T} = \sum_{i=1}^{R_{\text{true}}} a_i \circ b_i \circ c_i$, $R_{\text{true}}/R = 1.2$
- Tensor size $2000 \times 2000 \times 2000$, $R = 10$, sample size $16R^2$
- Tucker+CP: Run Tucker HOOI first, then run CP-ALS on the Tucker core
- Run Tucker HOOI with 5 sweeps, CP-ALS with 25 sweeps
Sketching General Tensor Networks

Problem: Given a tensor network input data, x, find a **Gaussian** tensor network embedding, S, such that the embedding is (ϵ, δ)-accurate and

- The number of rows of S (sketch size m) is low
- Asymptotic cost to compute Sx is minimized

An (oblivious) embedding $S \in \mathbb{R}^{m \times s}$ is (ϵ, δ)-accurate if\(^1\)

$$\Pr \left[\left| \frac{\|Sx\|_2 - \|x\|_2}{\|x\|_2} \right| > \epsilon \right] \leq \delta \quad \text{for any } x$$

\(^1\)Woodruff, Sketching as a tool for numerical linear algebra, 2014
Previous work:

- Kronecker product embedding\(^1\): inefficient in computational cost
- Tree embedding (e.g. MPS)\(^2\): efficient for specific data (Kronecker product, MPS), but efficiency unclear for general tensor network data

Assumptions throughout our analysis:

- Classical \(O(n^3)\) matmul cost
- Consider embeddings defined on graphs with no hyperedges
- Each dimension to be sketched
 - has a size lower bounded by the sketch size
 - is only adjacent to one data tensor

\(^1\)Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020

\(^2\)Rakhshan and Rabusseau, Tensorized random projections, AISTATS 2020
Sufficient condition for \((\epsilon, \delta)\)-accurate embedding

The embedding \(G = (V, E, w)\) is accurate if there exists a linear ordering of \(V\) such that in its induced DAG, the weighted sum of out-going edges adjacent to each \(v \in V\) is \(\Omega(m)\), where \(m = N \log(1/\delta)/\epsilon^2\).

Proof of accuracy leverages two key prior results\(^1\)

1. If \(S\) is \((\epsilon, \delta)\)-accurate, so is \(I \otimes S \otimes I\)
2. If \(S_1, \ldots, S_N\) are \((O(\epsilon/\sqrt{N}), \delta)\)-accurate, \(S_1 \cdots S_N\) is \((\epsilon, \delta)\)-accurate

\(^1\)Ahle et al, Oblivious sketching of high-degree polynomial kernels, SODA 2020
Tensor network sketch contains

1. Kronecker product embedding
2. Binary tree of small tensor network gadgets

Each gadget sketches product of two tensors

- chosen to minimize cost depending on connectivity
- may or may not be a tree

Can reduce cost by up to $O(\sqrt{m})$ relative to binary tree

near-optimal under assumptions
Applications of Tensor Network Sketching

- If input data is Khatri-Rao product or tensor product
 - new gadgets reduce cost by $O(\sqrt{m})$ relative to Gaussian binary tree embedding
 - this allows acceleration of sketching for CP decomposition
 - tree-like sketch structure also allows intermediate reuse during optimization (dimension trees)

- When data is an MPS (tensor train)
 - plain tree sketch is efficient (sketch can be binary tree or MPS-like)
 - shows optimality (subject to our sufficient condition) of prior work\(^1\)

\(^1\) Al Daas, Hussam, et al. Randomized algorithms for rounding in the tensor-train format, SISC 2023.
Summary and Conclusions

- Sketching for Tucker decomposition
 - Sketching HOOI gives accurate decomposition with enough sketch size
 - TensorSketch permits 1-pass (streaming) Tucker and CP
 - High polynomial scaling in rank; for CP addressable by indirect leverage score sampling\(^1\)

- Gaussian tensor network sketching
 - achieves linear cost relative to number of input tensors
 - limited analysis to Gaussian tensors, classical matrix multiplication cost
 - not considering hyperedges in sketch, e.g., Khatri-Rao product in TensorSketch

https://linjianma.github.io/

https://lpna.cs.illinois.edu/