
Communication Cost Models and a few Lower and
Upper Bounds

Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

March 27, 2017



Communication cost as an architectural bottleneck

Architectures are increasingly constrained by communication

floating-point units are free, amount of wiring bounds
bandwidth/latency

newest-generation memory models have non-uniform memory
access times

cloud-computing systems generally have much higher latency
than supercomputers



Models for communication cost

Communication can be classified as vertical and horizontal

vertical – data movement through the cache hierarchy
(memory–cache)

horizontal – data movement in the network
(processor–processor)

Such communication costs were studied for many decades

VLSI circuit models with bounded degree yield algorithms
with bounded horizontal communication

External memory algorithms work with bounded local memory
and transfers to/from disk, effectively vertical communication

Can these communication measures differ substantively?

Yes: consider matrix–vector multiplication

vertical communication is proportional to the matrix size
horizontal communication is proportional to the vector size

but similar techniques (e.g. blocking) used to lower both



Models for parallelism

Circuits were the first parallel algorithms

depth – execution time

size – amount of work

width – number of processors needed

The PRAM model tries to stay consistent with this view

instead of building dataflow into hardware, simply consider a
shared uniform memory

different PRAM variants permit different concurrent memory
access modes

how to read a PRAM type:

E-exclusive, C-concurrent
R-read, W-write

PRAM types: EREW, CREW, CRCW

what happens on a concurrent write? more types, e.g.
random or highest-priority succeeds



PRAM limitations

PRAM and circuit-style algorithms are usually designed to

1 minimize depth (execution time)

2 minimize number of processors

Each processor performs one unit of work per read/write and is
always synchronized with other processors

Brent’s Lemma (coarsening)

consider PRAM algorithm with depth T and P processors
can simulate using Q < P processors in time QT/P

problem: Brent’s lemma tells us little about
communication/synchronization

PRAM has no notion of local memory or cache



Parallel models with communication cost

How to incorporate communication and synchronization?

extend PRAM to have a notion of local memory/cache or do
away with the global shared memory
communicate point-to-point n-byte messages in time

α + β · n
each processor receives/sends 1 message at a time
finer details of messaging fixed by LogP and LogGP models
Bulk Synchronous parallel (BSP) model [Valiant 1990]

associate synchronizations with supersteps
communication cost with max amount of data ni sent or
received at superstep i

TBSP =
s∑

i=1

α + β · ni

collectives (broadcast, reduce, all-to-all) can be done in 1-2
supersteps with linear bandwidth cost
on p processors, often shaves O(log p) in latency, sometimes
(all-to-all) O(log p) in bandwidth



Matrix multiplication

Lets see how the models work for multiplication of n × n matrices

Cij =
n∑

l=1

AilBlj

PRAM: O(log(n)) depth, O(n3) work

TBSP(n, p) = O(α + β · (n3/p)2/3)

BSP with local memory M ∈ [n2/p, n2/p2/3]:

TBSP(n, p,M) = O

(
α · n3

pM3/2
+ β · n3

p
√
M

)



Rectangular matrix multiplication

Consider rectangular matrix multiplication, A ∈ Rm×k , B ∈ Rk×n,
C ∈ Rm×n,

Cij =
k∑

l=1

AilBlj

diagram source: Demmel et al 2013

generalizes matrix-vector product, vector inner/outer products

best algorithm given by appropriate p1× p2× p3 processor grid

vertical communication can be asymptotically greater than
horizontal communication



Sparse matrix multiplication

A yet more general setting is sparse matrix multiplication

Cij =
n∑

l=1

AilBlj

where A and B have nnz(A) and nnz(B) nonzeros

let C have nnz(C ) nonzeros, two variants:

nonzero structure of C can be induced from A and B
can predefine nonzero structure and compute only those entries

important variants: SpMV, SpMSpV, SpMM, SpGEMM
(SpMSpM)



Communication cost of sparse matrix multiplication

Best algorithm depends on sparsity structure

however, randomization and partitioning based on total
nonzero counts provides reasonable bounds

TBSP(A,B,C , p) = O

(
α+β· min

p1p2p3=p

[
nnz(A)

p1p2
+

nnz(B)

p2p3
+

nnz(C )

p1p3

])
in fact a bit better, e.g. if p1p2 = p no horizontal
communication proportional to nnz(A)

however, always have vertical communication cost
proportional to total nonzero count



Communication lower bounds for matrix multiplication

How close to optimal are these cost upper bounds?

communication lower bounds give the minimal amount of
communication for any schedule to execute an algorithm or
space of algorithms

appropriate representations of algorithms in these setting are:
dependency graphs, hypergraphs, algebraic encodings (bilinear
algorithms)

for dependency graphs, we are interesting in expansion, and
minimum vertex separators (cuts), for a vertex subset of a
given size

for algebraic encodings (bilinear algorithms), we are interested
in the rank of the encoding of any subset of bilinear forms

very few communication lower bounds apply to problems,
sorting is one exception (but still only comparison-based)

proofs don’t look like hardness reductions, which are
problem-to-problem



Volumetric inequalities

Inequalities that bound surface-to-volume ratio often serve as key
components of communication lower bounds proofs

Theorem (Discrete Loomis-Whitney Inequality)

Consider any V ⊆ [1, n]d . Then we have

|V | ≤
( d∏

j=1

|πj(V )|
)1/(d−1)

,

where, for j ∈ [1, d ], πj : [1, n]d → [1, n]d−1 is the projection

πj(i1, . . . , id) = (i1, . . . , ij−1, ij+1, . . . , id).

Generalizations exist to other types of projections



Volumetric inequalities

Theorem (Loomis-Whitney (3D version), 1949)

Let V be a set of 3-tuples V ⊆ [1, n]3

|V | ≤
√
|π1(V )||π2(V )||π3(V )|

where

π1(V ) = {(i2, i3) : ∃i1, (i1, i2, i3) ∈ V }
π2(V ) = {(i1, i3) : ∃i2, (i1, i2, i3) ∈ V }
π3(V ) = {(i1, i2) : ∃i3, (i1, i2, i3) ∈ V }

To minimize comm. in MM, minimize Π = π1(V )∪ π2(V )∪ π3(V )

|V | < |Π|3/2 ⇒ |Π| > |V |2/3

when |V | = n3/p, we see that |Π| > (n3/p)2/3



Lower bounds for matrix multiplication

Aforementioned dense matrix multiplication algorithms are
communication-optimal

sparse matrix multiplication is not yet fully understood

different settings for optimality question in the sparse case

for a given nonzero structure, lower bound can be written as
hypergraph partition, attainability is open
can also consider lower bounds for worst case structure, e.g.
define family of graphs that are nowhere local (special case:
maximum number of edges without triangles)
can restrict space of algorithms to be structure-oblivious



Beyond matrix multiplication

Why fuss so much about matrix multiplication?

sparse matrix multiplication is a powerful building block

can relax elementwise operations to different semirings (e.g.
tropical)

can often reason about communication complexity of
algorithms using complexity of MM

Kleene’s algorithm (LU, QR, SVD) – tree of MMs

Bellman Ford (sparse iterative methods) – repeated SpMV

BFS – repeated SpMSpV

unweighted Betweenness centrality – repeated SpMSpM

weighted Betweenness centrality – repeated SpMM



Synchronization complexity

Matrix multiplication has low synchronization cost

but doing many small dependent MMs is a different story

example: compare and contrast for weighted SSSP

Dijkstra’s algorithm is inherently sequential, includes repeated
SpMSpV where sparse vector has one nonzero
Bellman-Ford has parallelism, corresponds to SpMV (dense
vector)
however, Bellman-Ford touches each edge only once every
iteration (no data reuse), in other words vertical
communication cost of SpMV is high
in Betweenness centrality, Brandes’ algorithm can be done with
many concurrent SSSPs, then we can get data reuse and good
communication complexity

but can we be smarter and parallelize/block across matrix
multiplications?

for instance, repeatedly relax all edges in an isolated
neighborhood of a graph



Lets start with a 1D 2-point stencil

Normally, synchronize between every stencil application



In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before
synchronizing



In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before
synchronizing



In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before
synchronizing



In-time blocking (matrix-powers kernel)

Avoid synchronization by applying stencil repeatedly before
synchronizing



Analysis of in-time blocking for dD mesh

For dD mesh, there is more complexity

again consider t steps, and execute s without synchronization

we are constrained by s ≤ (n/p)1/d

otherwise we need to do asymptotically more computation and
interprocessor communication



Generalizing dependency expansion

Definition ((ε, σ)-path-expander)

Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency interval [ui , ui+b]G for
each i , b has size Θ(σ(b)) and a minimum cut of size Ω(ε(b)).

An example of a (b, b2)-path-expander



Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (ε, σ)-path-expander
dependency graph about a path of length n and some b ∈ [1, n]
incurs computation (F ), communication (W ), and synchronization
(S) costs:

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .

Corollary

If σ(b) = bd and ε(b) = bd−1, the above theorem yields,

F · Sd−1 = Ω
(
nd
)
, W · Sd−2 = Ω

(
nd−1

)
.



Comp.(F ) – comm.(W ) – sync.(S) tradeoffs

Dependency interval expansion occurs in many algorithms

for n × n Cholesky factorization

FCholesky · S2
Cholesky = Ω(n3)

WCholesky · SCholesky = Ω(n2)

typical algorithms for LU, QR, SVD and Kleene’s APSP
algorithm have similar dependency structure

Note: APSP is cheaper via path doubling [Tiskin 2001]
any shortest path of length [k/2, k] is composed of a shortest
path of length exactly k/2 and a shortest path of length ≤ k/2
APSP can be done using O(log(P)) SpMMs with
geometrically decreasing comm./comp. costs

for computing s applications of a (2m + 1)d -point stencil

FSt · Sd
St = Ω

(
m2d · sd+1

)
, WSt · Sd−1

St = Ω
(
md · sd

)
sparse iterative methods generally look like this



Krylov subspace methods of the future

Krylov subspace methods can be used to construct a basis for the
kernel of sparse matrix A

{x ,Ax ,A2x , . . . ,Akx}

ubiquitous in scientific computing, can solve linear-systems,
least-squares, and eigenvalue problems

dominated by repeated SpMV, most sparse matrices will give
high interval expansion
randomized projection-methods replace SpMV with SpMM

define n × (k + 10) Gaussian random matrix X
computation of AX can be shown to contain a good subspace
for the kernel of A!
if high accuracy guarantees are necessary, can use

(AAT )qAX

to improve accuracy exponentially with q
[Halko, Martinsson, Tropp 2011]



Conclusion and some references

Key points

matrix multiplication is general if permitting sparsity

multiplying two large matrices is comm. and sync. efficient

multiplying a matrix by a (sparse) vector is inefficient in
vertical communication and usually sync. inefficient as a
building block

more scalable algorithms often require radically different
approaches (e.g. path-doubling vs Floyd-Warshall)

Key references

Tiskin, Alexander. All-pairs shortest paths computation in the BSP model. 2001.

Halko, N., Martinsson, P.G. and Tropp, J.A. Finding structure with randomness. SIAM review. 2011

E. S., Erin Carson, Nicholas Knight, and James Demmel. Tradeoffs between synchronization,

communication, and computation in parallel linear algebra computations. 2017.

E. S., Maciej Besta, Flavio Vella, and Torsten Hoefler. Betweenness centrality is more parallelizable than

dense matrix multiplication. 2016.

CS598 ES, Fall 2016: Communication cost analysis of algorithms

http://solomon2.web.engr.illinois.edu/teaching/cs598 fall2016/index.html

http://solomon2.web.engr.illinois.edu/teaching/cs598_fall2016/index.html


Backup slides


	Models
	Matrix Multiplication
	Iterative Algorithms
	Conclusion

