
Tradeoffs between synchronization,
communication, and work in parallel schedules

Edgar Solomonik, Erin Carson, Nicholas Knight,
and James Demmel

Department of EECS, UC Berkeley

February, 2014

Edgar Solomonik Cost tradeoffs in parallel algorithms 1/ 35



Outline

Edgar Solomonik Cost tradeoffs in parallel algorithms 2/ 35



Graphical representation of a computation

We can represent an algorithm as a graph G = (V ,E ) where

V includes the input, intermediate, and output values used by
the algorithm
E represents the dependencies between pairs of values
e.g. to compute c = a · b, we have a, b, c ∈ V and
(a, b), (a, c) ∈ E

somewhat more generality may be achieved by working with
hypergraph representations H = (V , Ē )

Ē may represent the dependency of a value on a set of vertices
(e.g. reduction tree)
e.g. to compute d =

∑n
i=1 ci , we have d , ci ∈ V and

hyperedges ({c1, . . . cn}, {d}) ∈ Ē
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Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j

Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j

Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedules

Our goal will be to bound the payload of any parallel schedule
for given algorithms

the schedule must give a unique assignment/partitioning of
vertices amongst p processors

V =

p⋃
i=1

Ci

the schedule should give a sequence of mi computation and
communication operations

Fij is the set of values computed by processor i at timestep j
Rij is the set of values received by processor i at timestep j
Mij is the set of values sent by processor i at timestep j

Edgar Solomonik Cost tradeoffs in parallel algorithms 4/ 35



Parallel schedule example
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A schedule is a graph embedding

A parallel schedule must respect the dependency structure of the
dependency graph of the algorithm

The values
⋃

j Fij = Ci ⊂ V correspond to the vertices of
dependency graph G computed by processor i

All dependencies must be satisfied by the schedule

Dependent values must be communicated or computed
previously

For all non-local dependency paths in G , there must exist a
sequence of messages in the schedule
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Dependency bubble

Definition (Dependency bubble)

Given two vertices u, v in a directed acyclic graph G = (V ,E ), the
dependency bubble B(G , (u, v)) is the union of all paths in G from
u to v .
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Path-expander graph

Definition ((ε, σ)-path-expander)

Graph G = (V ,E ) is a (ε, σ)-path-expander if there exists a path
(u1, . . . un) ⊂ V , such that the dependency bubble B(G , (ui , ui+b))
has size Ω(σ(b)) and a minimum cut of size Ω(ε(b)).
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Scheduling tradeoffs of path-expander graphs

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm, with a (ε, σ)-path-expander
dependency graph G = (V ,E ) about a path of length n incurs the
computation (F ), bandwidth (W), and latency (S) costs

F = Ω (σ(b) · n/b) , W = Ω (ε(b) · n/b) , S = Ω (n/b) .
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An example (b, b2)-path-expander
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Application: Triangular solve

For lower triangular dense L, solve

L · x = y,

i.e.,
∑i

j=1 Lij · xj = yi , for i ∈ {1, . . . , n}.

x = TRSV(L, y, n)

1 for i = 1 to n
2 for j = 1 to i − 1
3 Zij = Lij · xj
4 xi =

(
yi −

∑i−1
j=1 Zij

)
/Lii
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Dependency Hypergraph: Triangular solve
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Bandwidth lower bound for TRSV

Theorem

Any parallelization of any dependency graph GTRSV(n) where two
processors compute bn2/pc elements of Z must incur a
communication cost of

WTRSV = Ω (n/
√
p) .

Proof.

Proof by application of lower bound on 2D lattice Hypergraph
cut.
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Tradeoffs for TRSV

Theorem

Any parallelization of any dependency graph GTRSV(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FTRSV = Ω (n · b) , WTRSV = Ω (n) , STRSV = Ω (n/b) ,

and furthermore, FTRSV · STRSV = Ω
(
n2
)
.

Proof.

Proof by application of path-based tradeoffs since GTRSV(n) is a
(b, b2)-path-expander dependency graph.
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Attainability and related work on TRSV

Diamond DAG lower bounds were also given by

Papadimitriou and Ullman [P.U. 1987]

Tiskin [T. 1998]

Efficient algorithms for TRSV attain above lower bounds

wavefront algorithms (Heath 1988)

also algorithms given by [P.U 1987] and [T. 1998]
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Application: Cholesky factorization

The Cholesky factorization of a symmetric positive definite matrix
A is

A = L · LT ,

for a lower-triangular matrix L.

L = Cholesky(A, n)

1 for j = 1 to n

2 Ljj =
√

Aij −
∑j−1

k=1 Ljk · Ljk
3 for i = j + 1 to n
4 for k = 1 to j − 1
5 Zijk = Lik · Ljk
6 Lij = (Aij −

∑j−1
k=1 Zijk)/Ljj
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Cholesky dependency hypergraph

These diagrams show (a) the vertices Zijk in VGE with n = 16 and
(b) the hyperplane x12 and hyperedge e12,6 on HGE.
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Cholesky bandwidth cost lower bound

Theorem

Any p-processor parallelization of the dependency graph GGE(n)
must incur a communication of

WGE = Ω
(
n2/p2/3

)
.

Proof.

Employs 3D lattice hypergraph cut lower bound and assumes some
work balance.
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Tradeoffs for Cholesky

Theorem

Any parallelization of any dependency graph GGE(n) incurs the
following computation (F ), bandwidth (W), and latency (S) costs,
for some b ∈ [1, n],

FGE = Ω
(
n · b2

)
, WGE = Ω (n · b) , SGE = Ω (n/b) ,

and furthermore, FGE · S2
GE = Ω

(
n3
)
, WGE · SGE = Ω

(
n2
)
.

Proof.

Proof by showing that GGE(n) is a (b2, b3)-path-expander about
the path corresponding to the calculation of the diagonal elements
of L.
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Attainability

The lower bounds are attainable for Cholesky and similar costs are
achievable for QR and the symmetric eigenproblem

Tiskin’s non-pivoted recursive LU and pairwise-pivoted BSP
algorithms

2.5D LU algorithm

WGE = n2/
√
cp bandwidth cost SGE =

√
cp synchronization

cost
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Krylov subspace methods

We consider the s-step Krylov subspace basis computation

x(l) = A · x(l−1),

for l ∈ {1, . . . , s} where the graph of the symmetric sparse matrix
A is a (2m + 1)d -point stencil.
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Cost tradeoffs for Krylov subspace methods on stencils

Theorem

Any parallel execution of an s-step Krylov subspace basis
computation for a (2m + 1)d -point stencil, requires the following
computational, bandwidth, and latency costs for some
b ∈ {1, . . . s},

FKr = Ω
(
md ·bd · s

)
,WKr = Ω

(
md ·bd−1 · s

)
, SKr = Ω (s/b) .

and furthermore,

FKr · Sd
Kr = Ω

(
md · sd+1

)
, WKr · Sd−1

Kr = Ω
(
md · sd

)
.
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Proof of tradeoffs for Krylov subspace methods

Proof.

Done by showing that the dependency graph of a s-step
(2m + 1)d -point stencil is a (mdbd ,mdbd+1)-path-expander.
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Attainability

The lower bounds may be attained via communication-avoiding
s-step algorithms (PA1 in Demmel, Hoemmen, Mohiyuddin, and
Yelick 2007)

FKr = O
(
md ·bd · s

)
,WKr = O

(
md ·bd−1 · s

)
, SKr = O (s/b) ,

under the assumption n/p1/d = O(bm).
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All-pairs shortest-paths problem

Given a weighted graph G = (V ,E ) with n vertices and a
corresponding adjacency matrix A, we seek to find the shortest
paths between all pairs of vertices in G

seek the closure, A∗, of A over the tropical semiring

c = c ⊕ a⊗ b on the tropical semiring implies
c = min(c , a + b)
the identity matrix I on the tropical semiring is 0 on the
diagonal and ∞ everywhere else

A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n

numerical computation on the sum-product semiring can be
computed by Gauss-Jordan Elimination

A∗ = (I− A)−1

on the tropical semiring it is commonly computed by the
Floyd-Warshall algorithm

Edgar Solomonik Cost tradeoffs in parallel algorithms 25/ 35



Floyd-Warshall algorithm

Compute shortest paths between each pair of vertices using
intermediate nodes {1, 2, . . . k},

D = Floyd-Warshall(A, n)

D = A
for k = 1 to n

for i = 1 to n
for j = 1 to n

dij = min(dij , dik + dkj)
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Gauss-Jordan elimination (Floyd Warshall algorithm)

A =

[
A11 A12

A21 A22

]
→
[
A∗

11 A12

A21 A22

]
→
[

A∗
11 A∗

11A12

A21A
∗
11 A22

]
→
[

A∗
11 A∗

11A12

A21A
∗
11 A22 ⊕ A21A

∗
11A12

]
= B[

B11 B12

B21 B22

]
→
[
B11 ⊕ B12B

∗
22B21 B12B

∗
22

B∗
22B21 B∗

22

]
= A∗

A11 A12

A21 A22

Adjacency matrix Distance matrix

V1 V2

V1

V2
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Parallel costs of Gauss-Jordan elimination

The floating point cost of Gauss-Jordan elimination is
F = Θ(n3/p). Our lower bounds may be applied since the
computation has the same structure as Gaussian Elimination, so

F · S2 = Ω(n3), W · S = Ω(n2).

These costs are achieved for W = O(n2/p2/3) by schedules in

Aggarwal, Chandra, and Snir 1990

Tiskin 2007

Solomonik, Buluc, and Demmel 2012
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Lower synchronization cost via path doubling

We can compute the tropical semiring closure

A∗ = I⊕ A⊕ A2 ⊕ . . .⊕ An = (I⊕ A)n,

directly via repeated squaring (path-doubling)

(I⊕ A)2k = (I⊕ A)k ⊗ (I⊕ A)k

with a total of log(n) matrix-matrix multiplications, with

F = O(n3 log(n)/p)

operations and O(log(n)) synchronizations, which can be less than
the O(p1/2) required by Floyd-Warshall.
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Tiskin’s path doubling algorithm

Tiskin gives a way to do path-doubling in F = O(n3/p) operations.
We can partition each Ak by path size (number of edges)

Ak = I⊕ Ak(1)⊕ Ak(2)⊕ . . .⊕ Ak(k)

where each Ak(l) contains the shortest paths of up to k ≥ l edges,
which have exactly l edges. We can see that

Al(l) ≤ Al+1(l) ≤ . . . ≤ An(l) = A∗(l),

in particular A∗(l) corresponds to a sparse subset of Al(l).
The algorithm works by picking l ∈ [k/2, k] and computing

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

which finds all paths of size up to 3k/2 by taking all paths of size
exactly l ≥ k/2 followed by all paths of size up to k .
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Path-doubling (Tiskin’s algorithm)
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Path-doubling

Earlier caveat:

(I⊕ A)3k/2 ≤ (I⊕ Ak(l))⊗ Ak ,

does not hold in general. The fundamental property used by the
algorithm is really

A∗(l)⊗ A∗(k) = A∗(l + k).

All shortest paths of up to any length are composable
(factorizable), but not paths up to a limited length. However, the
algorithm is correct because Al ≤ Ak(l) ≤ A∗(k).
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Cost of Tiskin’s algorithm

Since the decomposition by path size is disjoint, one can pick
Ak(l) for l ∈ [k/2, k] to have size

|Ak(l)| ≥ 2n2/k.

Each round of path doubling becomes cheaper than the previous,
so the cost is dominated by the first matrix multiplication,

F = O(n3/p) W = O(n2/p2/3) S = O(log(n)),

solving the APSP problem with no F · S2 or W · S tradeoff and
optimal flops.
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More on Tiskin’s APSP algorithms

Tiskin gives a way to lower the synchronization from
S = O(log(n)) to O(log(p)). For nonnegative edge lengths it is
straightforward

compute Ap via path-doubling

pick a small Ap(l) for l ∈ [p/2, p]

replicate Ap(l) and compute Dijkstra’s algorithm for n/p
nodes with each process, obtaining (Ap(l))∗

compute by matrix multiplication

A∗ = (Ap(l))∗ ⊗ Ap

since all shortest paths are composed of a path of size that is
a multiple of l ≤ p, followed by a shortest path of size up to p
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Summary and conclusion

obtained synchronization cost lower bound for any parallel
schedule of Gaussian elimination

same technique yields cost tradeoffs for Krylov subspace
methods

on the tropical semiring these are shortest-path graph
algorithms, Floyd-Warshall and Bellman-Ford

it is possible to use a different algorithm to circumvent the
tradeoffs for the all-pairs shortest-paths problem

Open question: can one circumvent the tradeoffs in an
algorithm that obtain the closure of a numerical matrix?
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