
Parallelization of Non-equilibrium Green’s Function

(NEGF) Simulations
Yang Dan

Department of Materials Science and Engineering,
University of Illinois at Urbana-Champaign

yangdan2@illinois.edu

Abstract

In physics and nanoscale technology, non-equilibrium
Green’s function (NEGF) is a widely used tool for quantum
transport simulation, but it is usually expensive for several
reasons, among which a huge amount of computational re-
source is consumed by the recursive Green’s function (RGF)
algorithm that makes up the central part of the NEGF method.
The RGF algorithm focuses on solving a subset of the entries
in the inverse of large sparse Hermitian matrices repeatedly.
In this research a way of parallelizing the RGF algorithm is
implemented, tested and analyzed, in the hope of improving
the applicability of NEGF method to more realistic engineer-
ing problems as a whole.

1. Motivation and Background

•NEGF makes excellent predictions for important physical
quantities related to quantum transport, such as the elec-
tron density of states (DOS) and the transmission spec-
tra of an Field Effect Transistor(FET). But the simulation is
usually expensive in time and memory.
• Simulation based on the NEGF equation derived from

Schrödinger’s equation

A ·G(E) = I (1)

where
A = EI−H−ΣL(E)−ΣR(E) (2)

G(E): the Green’s function;
H: the Hamiltonian matrix, block tridiagonal under tight-
bounding approximation;
ΣL(E): self energy matrix of the left reservoir, only
nonzero at the upper left corner;
ΣR(E): self energy matrix of the right reservoir, only
nonzero at the lower right corner;
E: energy; I: identity matrix.

Figure 1: A typical model of a 2-D transport process where
particles scatter in a scattering region between two reser-
voirs. The simulation is done on a 2-D uniform grid.

•N slices along the x direction and M slices along the y di-
rection, yielding block tridiagonal matrix A of size N ×N
in blocks, with each block Aij of size M × M and being
dense

A =



A11 A12 0 · · · 0 0 0
A21 A22 A23 · · · 0 0 0
0 A32 A33 · · · 0 0 0
...
0 0 0 · · · AN−2,N−2 AN−2,N−1 0
0 0 0 · · · AN−1,N−2 AN−1,N−1 AN−1,N
0 0 0 · · · 0 AN,N−1 AN,N


(3)

•Matrix A is often very large and sparse, but Hermitian.
The problem is reduced to calculating A−1. But fortunately
it is not necessary to inverse the whole matrix to get the de-
sired physical quantities. For example for the transmission
spectra calculation

T (E) = Trace[γR(E)A
−1
1,NγL(E)A

†
1,N] (4)

• γR(E) and γL(E) can be easily obtained from the self-
energy matrices.
• The key problem lies in calculating A−11,N

2. Theory and Algorithm

2.1 Domain Decomposition, Reordering, and
Calculating Schur’s Complement
•Different sequences of two manipulations, reordering or in-

version of matrix A, gives the same result.

(PAPT)−1 = (PT)−1A−1P−1 = PA−1PT (5)

Figure 2: Different sequences of reordering and inversion of
matrix A keeps the position of the desire block

•Reorder the rows and columns of matrix A so that it has a
2× 2 block structure

PAPT =

[
Aαα Aαβ

Aβα Aββ

]
(6)

and the desired block appears in the upper right block of
Aββ

• The inversion of Equation (6) yields

(PAPT)−1 =
[
× ×
× S−1

]
(7)

where S is the Schur’s complement and the upper right
block of S−1 is the desired A−11,N

S = Aββ −Aβα(Aαα)−1Aαβ (8)

(a) (b)

Figure 3: The structure of matrix A (a) before and (b) af-
ter reordering via row and column permutations. Numbers
marked by the matrices are indices of processors that own
the corresponding parts of the matrices. Nonzero blocks are
shown in the matrices with the subscript indicating the origi-
nal position and superscript indicating the position after per-
mutations. The desired block, whose position changes after
reordering, is marked in bold.

• After reordering, the Schur’s complement S is calculated
using block Gaussian elimination that eliminates Aβα with
Aαα. Each processor updates the blocks it owns with com-
munications of the boundary slices with its neighbors. After
completion, S is block tridiagonal and Hermitian

S =



A
ββ
11 A

ββ
12 0 · · · 0 0 0

A
ββ†
12 A

ββ
22 A

ββ
23 · · · 0 0 0

0 A
ββ†
23 A

ββ
33 · · · 0 0 0

...
0 0 0 · · · A

ββ
p−1,p−1 A

ββ
p−1,p 0

0 0 0 · · · A
ββ†
p−1,p A

ββ
p,p A

ββ
p,p+1

0 0 0 · · · 0 A
ββ†
p,p+1 A

ββ
p+1,p+1


(9)

2.2 Reducing Schur’s Complement with Cyclic
Reduction Algorithm

• The size of the Schur’s complement S can be reduced to a
3× 3 block matrix which is small enough to inverse directly
to get the desired block. The reduction is done using cyclic
reduction algorithm which reduces the size of S by half at
each step.

Figure 4: Cyclic reduction of a Schur’s complement matrix of
block size (p + 1) × (p + 1). The size of Schur’s complement
S is reduced by half at every step. The desired block stays at
the upper right corner of S.

3. Preliminary Results (by Dec. 13)

• Strong scaling experiments have been performed on UIUC
campus cluster, with N = 200 and M = 100.

Figure 5: Efficiency Ep as a function of the number of proces-
sors p. The dots indicate data acquired from the experiment
and the line is fitted from the experimental data.

References

[1] P.S. Drouvelis et al, Parallel implementation of the recur-
sive Greens function method, Journal of Computational
Physics, Vol 215, Issue 2, 2006, 741-756.

[2] Kuzmin A. et al, Fast Methods for Computing Selected
Elements of the Greens Function in Massively Paral-
lel Nanoelectronic Device Simulations. Lecture Notes in
Computer Science, vol 8097. Springer, Berlin, Heidel-
berg

[3] Lin, L., Lu, L., Ying, J.: Fast algorithm for extracting
the diagonal of the inverse matrix with application to the
electronic structure analysis of metallic systems. Comm.
Math. Sci. 7, 755777 (2009)

[4] Lin, L., Yang, C.: Selinv - an algorithm for selected inver-
sion of a sparse symmetric matrix. ACM Trans. on Math.
Software 37 (2011)

CS 554 Parallel Numerical Algorithms, December 18 2017, Thomas M. Siebel Center for Computer Science, UIUC

