
BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Numerical Algorithms
Chapter 3 – Dense Linear Systems

Section 3.1 – Vector and Matrix Products

Michael T. Heath and Edgar Solomonik

Department of Computer Science
University of Illinois at Urbana-Champaign

CS 554 / CSE 512

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 1 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Outline

1 BLAS

2 Inner Product

3 Outer Product

4 Matrix-Vector Product

5 Matrix-Matrix Product

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 2 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Basic Linear Algebra Subprograms

Basic Linear Algebra Subprograms (BLAS) are building
blocks for many other matrix computations

BLAS encapsulate basic operations on vectors and matrices
so they can be optimized for particular computer
architecture while high-level routines that call them remain
portable

BLAS offer good opportunities for optimizing utilization of
memory hierarchy

Generic BLAS are available from netlib, and many
computer vendors provide custom versions optimized for
their particular systems

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 3 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Examples of BLAS
Level Work Examples Function

1 O(n) daxpy Scalar × vector + vector
ddot Inner product
dnrm2 Euclidean vector norm

2 O(n2) dgemv Matrix-vector product
dtrsv Triangular solve
dger Outer-product

3 O(n3) dgemm Matrix-matrix product
dtrsm Multiple triangular solves
dsyrk Symmetric rank-k update

γ1︸︷︷︸
BLAS 1 effective sec/flop

> γ2︸︷︷︸
BLAS 2 effective sec/flop

� γ3︸︷︷︸
BLAS 3 effective sec/flop

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 4 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Inner Product

Inner product of two n-vectors x and y given by

xTy =

n∑
i=1

xi yi

Computation of inner product requires n multiplications
and n− 1 additions

M1 = Θ(n), Q1 = Θ(n), T1 = Θ(γ n)

Effectively as hard as scalar reduction, can be done via
binary or binomial tree summation

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 5 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Parallel Algorithm

Partition

For i = 1, . . . , n, fine-grain task i stores xi and yi, and
computes their product xi yi

Communicate

Sum reduction over n fine-grain tasks

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 6 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Fine-Grain Parallel Algorithm

zi = xiyi

reduce zi across all tasks i = 1, ..., n

{ local scalar product }

{ sum reduction }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Agglomeration and Mapping

Agglomerate

Combine k components of both x and y to form each
coarse-grain task, which computes inner product of these
subvectors

Communication becomes sum reduction over n/k
coarse-grain tasks

Map

Assign (n/k)/p coarse-grain tasks to each of p processors,
for total of n/p components of x and y per processor

x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6 x7 y7 x8 y8 x9 y9++ ++ + +

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 8 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Coarse-Grain Parallel Algorithm

zi = xT[i]y[i]

reduce zi across all processors i = 1, ..., p

{ local inner product }

{ sum reduction }

[
x[i] – subvector of x assigned to processor i

]
Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 9 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Performance

The parallel costs (Lp,Wp, Fp) for the inner product are given
by

Computational cost Fp = Θ(n/p) regardless of network

The latency and bandwidth costs depend on network:

1-D mesh: Lp,Wp = Θ(p)

2-D mesh: Lp,Wp = Θ(
√
p)

hypercube: Lp,Wp = Θ(log p)

For a hypercube or fully-connected network time is

Tp = αLp + βWp + γFp = Θ(α log(p) + γn/p)

Efficiency and scaling are the same as for binary tree sum

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 10 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Inner product on 1-D Mesh

For 1-D mesh, total time is Tp = Θ(γn/p+ αp)

To determine strong scalability, we set constant efficiency
and solve for ps

const = Eps =
T1
psTps

= Θ

(
γn

γn+ αp2s

)
= Θ

(
1

1 + (α/γ)p2s/n

)
which yields ps = Θ(

√
(γ/α)n)

1-D mesh weakly scalable to pw = Θ((γ/α)n) processors:

Epw(pwn) = Θ

(
1

1 + (α/γ)p2w/(pwn)

)
= Θ

(
1

1 + (α/γ)pw/n

)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 11 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Scalability

Inner product on 2-D Mesh

For 2-D mesh, total time is Tp = Θ(γn/p+ α
√
p)

To determine strong scalability, we set constant efficiency
and solve for ps

const = Eps =
T1
psTps

= Θ

(
γn

γn+ αp
3/2
s

)
= Θ

(
1

1 + (α/γ)p
3/2
s /n

)
which yields ps = Θ((γ/α)2/3n2/3)

2-D mesh weakly scalable to pw = Θ((γ/α)2n2), since

Epw(pwn) = Θ

(
1

1 + (α/γ)p
3/2
w /(pwn)

)
= Θ

(
1

1 + (α/γ)
√
pw/n

)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 12 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product

Outer product of two n-vectors x and y is n× n matrix
Z = xyT whose (i, j) entry zij = xi yj

For example,x1x2
x3

y1y2
y3

T =

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3


Computation of outer product requires n2 multiplications,

M1 = Θ(n2), Q1 = Θ(n2), T1 = Θ(γn2)

(in this case, we should treat M1 as output size or define
the problem as in the BLAS: Z = Zinput + xyT)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 13 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) computes and
stores zij = xi yj , yielding 2-D array of n2 fine-grain tasks

Assuming no replication of data, at most 2n fine-grain
tasks store components of x and y, say either

for some j, task (i, j) stores xi and task (j, i) stores yi, or
task (i, i) stores both xi and yi, i = 1, . . . , n

Communicate

For i = 1, . . . , n, task that stores xi broadcasts it to all other
tasks in ith task row

For j = 1, . . . , n, task that stores yj broadcasts it to all
other tasks in jth task column

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 14 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Tasks and Communication

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 15 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Parallel Algorithm

broadcast xi to tasks (i, k), k = 1, . . . , n

broadcast yj to tasks (k, j), k = 1, . . . , n

zij = xiyj

{ horizontal broadcast }

{ vertical broadcast }

{ local scalar product }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 16 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: Combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 17 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

Each task that stores portion of x must broadcast its
subvector to all other tasks in its task row

Each task that stores portion of y must broadcast its
subvector to all other tasks in its task column

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 18 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 19 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

If either x or y stored in one task, then broadcast required
to communicate needed values to all other tasks

If either x or y distributed across tasks, then multinode
broadcast required to communicate needed values to other
tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 20 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 21 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 22 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

2-D: Assign (n/k)2/p coarse-grain tasks to each of p
processors using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processors
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 23 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 24 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 25 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration with Block Mapping

x1 y1 x1 y2

x2 y1 x2 y2

x1 y3 x1 y4

x2 y3 x2 y4

x3 y1 x3 y2

x4 y1 x4 y2

x3 y3 x3 y4

x4 y3 x4 y4

x5 y1 x5 y2

x6 y1 x6 y2

x5 y3 x5 y4

x6 y3 x6 y4

x1 y5 x1 y6

x2 y5 x2 y6

x3 y5 x3 y6

x4 y5 x4 y6

x5 y5 x5 y6

x6 y5 x6 y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 26 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain Parallel Algorithm

broadcast x[i] to ith process row

broadcast y[j] to jth process column

Z[i][j] = x[i]y
T
[j]

{ horizontal broadcast }

{ vertical broadcast }

{ local outer product }

[
Z[i][j] means submatrix of Z assigned to process (i, j) by

mapping
]

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 27 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Performance

The parallel costs (Lp,Wp, Fp) for the outer product are
Computational cost Fp = Θ(n2/p) regardless of network
The latency and bandwidth costs can be derived from the
cost of broadcast/allgather

1-D agglomeration: Lp = Θ(log p),Wp = Θ(n)

2-D agglomeration: Lp = Θ(log p),Wp = Θ(n/
√
p)

For 1-D agglomeration, execution time is

T 1-D
p = T allgather

p (n) + Θ(γn2/p) = Θ(α log(p) + βn+ γn2/p)

For 2-D agglomeration, execution time is

T 2-D
p = 2T bcast√

p (n/
√
p)+Θ(γn2/p) = Θ(α log(p)+βn/

√
p+γn2/p)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 28 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Strong Scaling

1-D agglomeration is strongly scalable to

ps = Θ(min((γ/α)n2/ log((γ/α)n2), (γ/β)n))

processors, since

E1-D
ps = Θ(1/(1 + (α/γ) log(ps)ps/n

2 + (β/γ)ps/n))

2-D agglomeration is strongly scalable to

ps = Θ(min((γ/α)n2/ log((γ/α)n2), (γ/β)2n2))

processors, since

E2-D
ps = Θ(1/(1 + (α/γ) log(ps)ps/n

2 + (β/γ)
√
ps/n))

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 29 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Outer Product Weak Scaling

1-D agglomeration is weakly scalable to

pw = Θ(min(2(γ/α)n
2
, (γ/β)2n2))

processors, since

E1-D
pw (
√
pwn) = Θ(1/(1 + (α/γ) log(pw)/n2 + (β/γ)

√
pw/n))

2-D agglomeration is weakly scalable to

pw = Θ(2(γ/α)n
2
)

processors, since

E2-D
pw (
√
pwn) = Θ(1/(1 + (α/γ) log(pw)/n2 + (β/γ)/n))

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 30 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Memory Requirements

The memory requirements are dominated by storing Z,
which in practice means the outer-product is a poor
primitive (local flop-to-byte ratio of 1)
If possible, Z should be operated on as it is computed, e.g.
if we really need

vi =
∑
j

f(xiyj) for some scalar function f

If Z does not need to be stored, vector storage dominates
Without further modification, 1-D algorithm requires
Mp = Θ(np) overall storage for vector
Without further modification, 2-D algorithm requires
Mp = Θ(n

√
p) overall storage for vector

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 31 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Vector Product

Consider matrix-vector product

y = Ax

where A is n× n matrix and x and y are n-vectors

Components of vector y are given by inner products:

yi =

n∑
j=1

aij xj , i = 1, . . . , n

The sequential memory, work, and time are

M1 = Θ(n2), Q1 = Θ(n2), T1 = Θ(γn2)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 32 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j = 1, . . . , n, fine-grain task (i, j) stores aij and
computes aij xj , yielding 2-D array of n2 fine-grain tasks

Assuming no replication of data, at most 2n fine-grain
tasks store components of x and y, say either

for some j, task (j, i) stores xi and task (i, j) stores yi, or
task (i, i) stores both xi and yi, i = 1, . . . , n

Communicate

For j = 1, . . . , n, task that stores xj broadcasts it to all
other tasks in jth task column

For i = 1, . . . , n, sum reduction over ith task row gives yi

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Tasks and Communication

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Parallel Algorithm

broadcast xj to tasks (k, j), k = 1, . . . , n

yi = aijxj

reduce yi across tasks (i, k), k = 1, . . . , n

{ vertical broadcast }

{ local scalar product }

{ horizontal sum reduction }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 35 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: Combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: Combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: Combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 36 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

Subvector of x broadcast along each task column

Each task computes local matrix-vector product of
submatrix of A with subvector of x

Sum reduction along each task row produces subvector of
result y

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 37 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration

a13x3
a11x1
y1

a12x2

a21x1
a22x2
y2

a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 38 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

1-D column agglomeration

Each task computes product of its component of x times
its column of matrix, with no communication required

Sum reduction across tasks then produces y

1-D row agglomeration

If x stored in one task, then broadcast required to
communicate needed values to all other tasks

If x distributed across tasks, then multinode broadcast
required to communicate needed values to other tasks

Each task computes inner product of its row of A with
entire vector x to produce its component of y

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 39 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 40 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 41 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Agglomeration

Column and row algorithms are dual to each other

Column algorithm begins with communication-free local
vector scaling (daxpy) computations combined across
processors by a reduction
Row algorithm begins with broadcast followed by
communication-free local inner-product (ddot)
computations

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 42 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

2-D: Assign (n/k)2/p coarse-grain tasks to each of p
processes using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processes
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 43 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

2-D Agglomeration with Block Mapping

a13x3
a11x1
y1

a12x2

a21x1
a22x2
y2

a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 44 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Column Agglomeration with Block Mapping

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 45 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

1-D Row Agglomeration with Block Mapping

a11x1
y1

a12x2

a21x1
a22x2
y2

a13x3 a14x4

a23x3 a24x4

a31x1 a32x2

a41x1 a42x2

a33x3
y3

a34x4

a43x3
a44x4
y4

a51x1 a52x2

a61x1 a62x2

a53x3 a54x4

a63x3 a64x4

a15x5 a16x6

a25x5 a26x6

a35x5 a36x6

a45x5 a46x6

a55x5
y5

a56x6

a65x5
a66x6
y6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 46 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain Parallel Algorithm

broadcast x[j] to jth process column

y[i] = A[i][j]x[j]

reduce y[i] across ith process row

{ vertical broadcast }

{ local matrix-vector product }

{ horizontal sum reduction }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 47 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Performance

The parallel costs (Lp,Wp, Fp) for the matrix-vector product are
Computational cost Fp = Θ(n2/p) regardless of network
Communication costs can be derived from the cost of
collectives

1-D agglomeration: Lp = Θ(log p),Wp = Θ(n)
2-D agglomeration: Lp = Θ(log p),Wp = Θ(n/

√
p)

For 1-D row agglomeration, perform allgather,

T 1-D
p = T allgather

p (n) + Θ(γn2/p) = Θ(α log(p) + βn+ γn2/p)

For 2-D agglomeration, perform broadcast and reduction,

T 2-D
p = T bcast√

p (n/
√
p) + T reduce√

p (n/
√
p) + Θ(γn2/p)

= Θ(α log(p) + βn/
√
p+ γn2/p)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 48 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Consider matrix-matrix product

C = AB

where A, B, and result C are n× n matrices

Entries of matrix C are given by

cij =

n∑
k=1

aik bkj , i, j = 1, . . . , n

Each of n2 entries of C requires n multiply-add operations,
so model serial time as

T1 = γ n3

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 49 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Matrix-Matrix Product

Matrix-matrix product can be viewed as

n2 inner products, or
sum of n outer products, or
n matrix-vector products

and each viewpoint yields different algorithm

One way to derive parallel algorithms for matrix-matrix
product is to apply parallel algorithms already developed
for inner product, outer product, or matrix-vector product

However, considering the problem as a whole yields the
best algorithms

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 50 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Partition

For i, j, k = 1, . . . , n, fine-grain task
(i, j, k) computes product aik bkj , yielding
3-D array of n3 fine-grain tasks
Assuming no replication of data, at most
3n2 fine-grain tasks store entries of A, B,
or C, say task (i, j, j) stores aij , task
(i, j, i) stores bij , and task (i, j, k) stores
cij for i, j = 1, . . . , n and some fixed k

i

j

k

We refer to subsets of tasks along i, j, and k dimensions
as rows, columns, and layers, respectively, so kth column
of A and kth row of B are stored in kth layer of tasks

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 51 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Parallel Algorithm

Communicate

Broadcast entries of jth column of A horizontally along
each task row in jth layer

Broadcast entries of ith row of B vertically along each task
column in ith layer

For i, j = 1, . . . , n, result cij is given by sum reduction over
tasks (i, j, k), k = 1, . . . , n

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 52 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fine-Grain Algorithm

broadcast aik to tasks (i, q, k), q = 1, . . . , n

broadcast bkj to tasks (q, j, k), q = 1, . . . , n

cij = aikbkj

reduce cij across tasks (i, j, q), q = 1, . . . , n

{ horizontal broadcast }

{ vertical broadcast }

{ local scalar product }

{ lateral sum reduction }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 53 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration

Agglomerate

With n× n× n array of fine-grain tasks, natural strategies are

3-D: Combine q × q × q subarray of fine-grain tasks

2-D: Combine q × q × n subarray of fine-grain tasks,
eliminating sum reductions

1-D column: Combine n× 1× n subarray of fine-grain
tasks, eliminating vertical broadcasts and sum reductions

1-D row: Combine 1× n× n subarray of fine-grain tasks,
eliminating horizontal broadcasts and sum reductions

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 54 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Mapping

Map

Corresponding mapping strategies are

3-D: Assign (n/q)3/p coarse-grain tasks to each of p
processors using any desired mapping in each dimension,
treating target network as 3-D mesh

2-D: Assign (n/q)2/p coarse-grain tasks to each of p
processors using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: Assign n/p coarse-grain tasks to each of p processors
using any desired mapping, treating target network as 1-D
mesh

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 55 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration with Block Mapping

1-D row 1-D col 2-D 3-D

agglomerations

1-D column1-D row 3-D2-D

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 56 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain 3-D Parallel Algorithm

broadcast A[i][k] to ith processor row

broadcast B[k][j] to jth processor column

C[i][j] = A[i][k]B[k][j]

reduce C[i][j] across processor layers

{ horizontal broadcast }

{ vertical broadcast }

{ local matrix product }

{ lateral sum reduction }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 57 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Agglomeration with Block Mapping

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=1-D column:

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=1-D row:

A21 B12 + A22 B22A21 B11 + A22 B21

A11 B12 + A12 B22

B22B21

B12B11

A22A21

A12A11 A11 B11 + A12 B21

=2-D:

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 58 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Coarse-Grain 2-D Parallel Algorithm

allgather A[i][j] in ith processor row
allgather B[i][j] in jth processor column
C[i][j] = 0

for k = 1, . . . ,
√
p

C[i][j] = C[i][j] + A[i][k]B[k][j]

end

{ horizontal broadcast }
{ vertical broadcast }

{ sum local products }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 59 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

SUMMA Algorithm

Algorithm just described requires excessive memory, since
each process accumulates

√
p blocks of both A and B

One way to reduce memory requirements is to

broadcast blocks of A successively across processor rows
broadcast blocks of B successively across processor cols

C[i][j] = 0

for k = 1, . . . ,
√
p

broadcast A[i][k] in ith processor row
broadcast B[k][j] in jth processor column
C[i][j] = C[i][j] + A[i][k]B[k][j]

end

{ horizontal broadcast }
{ vertical broadcast }
{ sum local products }

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 60 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

SUMMA Algorithm

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

16 CPUs (4x4)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 61 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Cannon Algorithm

Another approach, due to Cannon (1969), is to circulate
blocks of B vertically and blocks of A horizontally in ring
fashion

Blocks of both matrices must be initially aligned using
circular shifts so that correct blocks meet as needed

Requires less memory than SUMMA and replaces line
broadcasts with shifts, lowering the number of messages

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 62 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Cannon Algorithm

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 63 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Fox Algorithm

It is possible to mix techniques from SUMMA and
Cannon’s algorithm:

circulate blocks of B in ring fashion vertically along
processor columns step by step so that each block of B
comes in conjunction with appropriate block of A broadcast
at that same step

This algorithm is due to Fox et al.

Shifts, especially in Cannon’s algorithm, are harder to
generalize to nonsquare processor grids than collectives in
algorithms like SUMMA

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 64 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Execution Time for 3-D Agglomeration

For 3-D agglomeration, computing each of p blocks C[i][j]

requires matrix-matrix product of two (n/ 3
√
p)× (n/ 3

√
p)

blocks, so
Fp = (n/ 3

√
p)3 = n3/p

On 3-D mesh, each broadcast or reduction takes time

T bcast
p1/3

((n/p1/3)2) = O(α log p+ βn2/p2/3)

Total time is therefore

Tp = O(α log p+ β n2/p2/3 + γ n3/p)

However, overall memory footprint is

Mp = Θ(p(n/p1/3)2) = Θ(p1/3n2)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 65 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Strong Scalability of 3-D Agglomeration

The 3-D agglomeration efficiency is given by

Ep(n) =
pT1(n)

Tp(n)
= O(1/(1+(α/γ)p log p/n3+(β/γ) p1/3/n))

For strong scaling to ps processors we need
Eps(n) = Θ(1), so 3-D agglomeration strong scales to

ps = O(min((γ/α)n3/ log(n), (γ/β)n3)) processors

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 66 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Weak Scalability of 3-D Agglomeration

For weak scaling (with constant input size / processor) to
pw processor, we need Epw(n

√
pw) = Θ(1), which holds

However, note that the algorithm is not memory-efficient as
Mp = Θ(p1/3n2), and if keeping memory footprint per
processor constant, we must grow n with p1/3

Scaling with constant memory footprint processor
(Mp/p = const) is possible to pm processors where
Epm(np

1/3
m) = Θ(1), which holds for

pm = Θ(2(γ/α)n
3
) processors

The isoefficiency function is Q̃(p) = Θ(p log(p))

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 67 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Execution Time for 2-D Agglomeration

For 2-D agglomeration (SUMMA), computation of each
block C[i][j] requires

√
p matrix-matrix products of

(n/
√
p)× (n/

√
p) blocks, so

Fp =
√
p (n/

√
p)3 = n3/p

For broadcast among rows and columns of processir grid,
communication time is

2
√
pT bcast√

p (n2/p) = Θ(α
√
p log(p) + βn2/

√
p)

Total time is therefore

Tp = O(α
√
p log(p) + βn2/

√
p+ γ n3/p)

The algorithm is memory-efficient, Mp = Θ(n2)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 68 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Strong Scalability of 2-D Agglomeration

The 2-D agglomeration efficiency is given by

Ep(n) =
pT1(n)

Tp(n)
= O(1/(1+(α/γ)p3/2 log p/n3+(β/γ)

√
p/n))

For strong scaling to ps processors we need
Eps(n) = Θ(1), so 2-D agglomeration strong scales to

ps = O(min((γ/α)n2/ log(n)2/3, (γ/β)n2)) processors

For weak scaling to pw processors with n2/p matrix
elements per processor, we need Epw(

√
pwn) = Θ(1), so

2-D agglomeration (SUMMA) weak scales to

pw = O(2(γ/α)n
3
) processors

Cannon’s algorithm achieves unconditional weak scalability

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 69 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Scalability for 1-D Agglomeration

For 1-D agglomeration on 1-D mesh, total time is

Tp = O(α log(p) + βn2 + γn3/p)

The corresponding efficiency is

Ep = O(1/(1 + (α/β)p log(p)n3 + (β/γ)p/n)

Strong scalability is possible to at most ps = O((γ/β)n)
processors
Weak scalability is possible to at most pw = O(

√
(γ/β)n)

processors

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 70 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Rectangular Matrix Multiplication

If C is m× n, A is m× k,
and B is k × n, choosing
a 3D grid that optimizes
volume-to-surface-area
ratio yields bandwidth
cost...

Wp(m,n, k) = O

(
min

p1p2p3=p

[
mk

p1p2
+

kn

p1p3
+

mn

p2p3

])
Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 71 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Communication vs. Memory Tradeoff

Communication cost for 2-D algorithms for matrix-matrix
product is optimal, assuming no replication of storage
If explicit replication of storage is allowed, then lower
communication volume is possible via 3-D algorithm
Generally, we assign n/p1 × n/p2 × n/p3 computation
subvolume to each processor
The largest face of the subvolume gives communication
cost, the smallest face gives minimal memory usage

can keep smallest face local while successively computing
slices of subvolume

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 72 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Leveraging Additional Memory in Matrix Multiplication

Provided M̄ total available memory, 2-D and 3-D
algorithms achieve bandwidth cost

Wp(n, M̄) =


∞ : M̄ < n2

n2/
√
p : M̄ = Θ(n2)

n2/p2/3 : M̄ = Θ(n2p1/3)

For general M̄ , possible to pick processor grid to achieve

Wp(n, M̄) = O(n3/(
√
pM̄1/2) + n2/p2/3)

and an overall execution time of

Tp(n, M̄) = O(α(log p+ n3
√
p/M̄3/2) + βWp(n, M̄) + γn3/p)

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 73 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

Strong Scaling using All Available Memory

The efficiency of the algorithm for a given amount of total
memory M̄p is

Ep(n, M̄p) = O(1/(1 + (α/γ)(p log p/n3 + p3/2/M̄3/2
p)

+ (β/γ)(
√
p/M̄1/2

p + p1/3/n)))

For strong scaling assuming M̄p = pM̄1, we need

Eps(n, psM̄1) = psT1(n, M̄1)/Tps(n, psM̄1) = Θ(1)

In this case, we obtain

ps = Θ(min((α/γ)n3/ log(n), (β/γ)n3))

as good as the 3-D algorithm, but more memory-efficient

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 74 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and
P. Palkar, A three-dimensional approach to parallel matrix
multiplication, IBM J. Res. Dev., 39:575-582, 1995

J. Berntsen, Communication efficient matrix multiplication
on hypercubes, Parallel Comput. 12:335-342, 1989

J. Demmel, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and
O. Spillinger, Communication-optimal parallel recursive
rectangular matrix multiplication, IPDPS, 2013

J. W. Demmel, M. T. Heath, and H. A. van der Vorst,
Parallel numerical linear algebra, Acta Numerica
2:111-197, 1993

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 75 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

R. Dias da Cunha, A benchmark study based on the
parallel computation of the vector outer-product A = uvT

operation, Concurrency: Practice and Experience
9:803-819, 1997

G. C. Fox, S. W. Otto, and A. J. G. Hey, Matrix algorithms
on a hypercube I: matrix multiplication, Parallel Comput.
4:17-31, 1987

D. Irony, S. Toledo, and A. Tiskin, Communication lower
bounds for distributed-memory matrix multiplication, J.
Parallel Distrib. Comput. 64:1017-1026, 2004.

S. L. Johnsson, Communication efficient basic linear
algebra computations on hypercube architectures, J.
Parallel Distrib. Comput. 4(2):133-172, 1987

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 76 / 77

BLAS
Inner Product
Outer Product

Matrix-Vector Product
Matrix-Matrix Product

Parallel Algorithm
Agglomeration Schemes
Scalability

References

S. L. Johnsson, Minimizing the communication time for
matrix multiplication on multiprocessors, Parallel Comput.
19:1235-1257, 1993

B. Lipshitz, Communication-avoiding parallel recursive
algorithms for matrix multiplication, Tech. Rept.
UCB/EECS-2013-100, University of California at Berkeley,
May 2013.

O. McBryan and E. F. Van de Velde, Matrix and vector
operations on hypercube parallel processors, Parallel
Comput. 5:117-126, 1987

R. A. Van De Geijn and J. Watts, SUMMA: Scalable
universal matrix multiplication algorithm, Concurrency:
Practice and Experience 9(4):255-274, 1997

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 77 / 77

	BLAS
	Inner Product
	Parallel Algorithm
	Scalability

	Outer Product
	Parallel Algorithm
	Agglomeration Schemes
	Scalability

	Matrix-Vector Product
	Parallel Algorithm
	Agglomeration Schemes
	Scalability

	Matrix-Matrix Product
	Parallel Algorithm
	Agglomeration Schemes
	Scalability

