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Triangular Matrices

Matrix L is lower triangular if all entries above its main
diagonal are zero, `ij = 0 for i < j

Matrix U is upper triangular if all entries below its main
diagonal are zero, uij = 0 for i > j

Triangular matrices are important because triangular linear
systems are easily solved by successive substitution

Most direct methods for solving general linear systems first
reduce matrix to triangular form and then solve resulting
equivalent triangular system(s)

Triangular systems are also frequently used as
preconditioners in iterative methods for solving linear
systems
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Forward Substitution

For lower triangular system Lx = b, solution can be obtained
by forward substitution

xi =
(
bi −

i−1∑
j=1

`ij xj

)
/`ii, i = 1, . . . , n

for j = 1 to n
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ijxj
end

end

{ compute soln component }

{ update right-hand side }
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Back Substitution

For upper triangular system Ux = b, solution can be obtained
by back substitution

xi =
(
bi −

n∑
j=i+1

uij xj

)
/uii, i = n, . . . , 1

for j = n to 1
xj = bj/ujj
for i = 1 to j − 1

bi = bi − uijxj
end

end

{ compute soln component }

{ update right-hand side }
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Solving Triangular Systems

Forward or back substitution requires about n2/2
multiplications and similar number of additions, so serial
exeuction time is

T1 = Θ(γn2)

We will consider only lower triangular systems, as
analogous algorithms for upper triangular systems are
similar
The depth of triangular solve is D = Θ(n), so the
maximum speed-up is T1/D = Θ(n)
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Loop Orderings for Forward Substitution

for j = 1 to n
xj = bj/`jj
for i = j + 1 to n

bi = bi − `ij xj
end

end

right-looking
immediate-update
data-driven
fan-out

for i = 1 to n
for j = 1 to i− 1

bi = bi − `ij xj
end
xi = bi/`ii

end

left-looking
delayed-update
demand-driven
fan-in
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Fine-Grain Algorithm

Parallel Algorithm

Partition
For i = 2, . . . , n, j = 1, . . . , i− 1, fine-grain task (i, j) stores
`ij and computes product `ij xj
For i = 1, . . . , n, fine-grain task (i, i) stores `ii and bi,
collects sum ti =

∑i−1
j=1 `ij xj , and computes and stores

xi = (bi − ti)/`ii
yielding 2-D triangular array of n (n+ 1)/2 fine-grain tasks

Communicate
For j = 1, . . . , n− 1, task (j, j) broadcasts xj to tasks (i, j),
i = j + 1, . . . , n

For i = 2, . . . , n, sum reduction of products `ij xj across
tasks (i, j), j = 1, . . . , i, with task (i, i) as root
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Fine-Grain Algorithm

Fine-Grain Tasks and Communication
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Fine-Grain Parallel Algorithm

if i = j then
t = 0
if i > 1 then

recv sum reduction of t across tasks (i, k), k = 1, . . . , i
end
xi = (bi − t)/`ii
broadcast xi to tasks (k, i), k = i+ 1, . . . , n

else
recv broadcast of xj from task (j, j)
t = `ij xj
reduce t across tasks (i, k), k = 1, . . . , i

end
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Fine-Grain Algorithm

Fine-Grain Algorithm

If communication is suitably pipelined, then fine-grain
algorithm can achieve Θ(n) execution time, but uses Θ(n2)
tasks, so it is inefficient

If there are multiple right-hand-side vectors b, then
successive solutions can be pipelined to increase overall
efficiency

Agglomerating fine-grain tasks yields more reasonable
number of tasks and improves ratio of computation to
communication
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Fine-Grain Algorithm

Agglomeration

Agglomerate

With n× n array of fine-grain tasks, natural strategies are

2-D: combine k × k subarray of fine-grain tasks to form
each coarse-grain task, yielding (n/k)2 coarse-grain tasks

1-D column: combine n fine-grain tasks in each column
into coarse-grain task, yielding n coarse-grain tasks

1-D row: combine n fine-grain tasks in each row into
coarse-grain task, yielding n coarse-grain tasks
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Fine-Grain Algorithm

2-D Agglomeration
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1-D Column Agglomeration
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Fine-Grain Algorithm

1-D Row Agglomeration
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Fine-Grain Algorithm

Mapping

Map

2-D: assign (n/k)2/p coarse-grain tasks to each of p
processors using any desired mapping in each dimension,
treating target network as 2-D mesh

1-D: assign n/p coarse-grain tasks to each of p processors
using any desired mapping, treating target network as 1-D
mesh
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Fine-Grain Algorithm

1-D Column Agglomeration, Block Mapping
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Fine-Grain Algorithm

1-D Column Agglomeration, Cyclic Mapping
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Fine-Grain Algorithm

1-D Aggregation with Block-Cyclic Mapping Cost

With block-size b, 1D partitioning
requires n/b broadcasts of b items for row-agglomeration
requires n/b reductions of b items for column-agglomeration
in both cases O(nb/p+ b2) work must be done to solve for b
entries of x between each of the n/b collectives

The overall execution time is

Tp(n, b) = Θ
(
α(n/b) log(p) + βn+ γ(n2/p+ nb)

)
Selecting block-size b = n/p, parallel execution time is

Tp(n, n/p) = Θ
(
αp log(p) + βn+ γn2/p

)
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Fine-Grain Algorithm

1-D Block-Cyclic Algorithm Communication Cost

To determine strong scalability limit, we wish to determine when
Tp(n, n/p) is dominated by the term γn2/p, we have

Tp(n, n/p) = Θ
(
αp log(p) + βn+ γn2/p

)

The bandwidth cost yields the bound

ps = O
(

(γ/β)n
)

The latency cost yields the bound

ps = O
(

(
√
γ/α)n/

√
log(

√
(γ/α)n)

)
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Fine-Grain Algorithm

1-D Block-Cyclic Algorithm Weak Scalability

The efficiency of the block-cyclic algorithm is

Ep(n) = Θ

(
1/
(

1 + (α/γ)p2 log(p)/n2 + (β/γ)p/n
))

Weak scaling, corresponds to p processors and
n =
√
pwn0 elements (input size per processor is

M1/p = (n0
√
p)2/p = n20)

Epw(n0
√
pw) = Θ

(
1/
(

1+(α/γ)pw log(pw)/n20+(β/γ)
√
pw/n0

))
Therefore, weak scalability is possible to

pw = Θ
(

min[(γ/α)n20/ log((γ/α)n20), (γ/β)2n20]
)

processors
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1-D Column Wavefront Algorithm
1-D Row Wavefront Algorithm

Wavefront Algorithms

Naive fan-out and fan-in algorithms derive their parallelism
from inner loop, whose work is partitioned and distributed
across processors, while outer loop is serial

Conceptually, fan-out and fan-in algorithms work on only
one component of solution at a time, though successive
steps may be pipelined

Wavefront algorithms exploit parallelism in outer loop
explicitly by working on multiple components of solution
simultaneously
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1-D Column Wavefront Algorithm
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1-D Column Wavefront Algorithm

Naive 1-D column fan-out algorithm seems to admit no
parallelism: after processor owning column j computes xj ,
resulting updating of right-hand side cannot be shared with
other processors because they cannot access column j

Instead of performing all such updates immediately,
however, process owning column j could complete only
first s components of update vector and forward them to
processor owning column j + 1 before continuing with next
s components of update vector, etc.

Upon receiving first s components of update vector,
processor owning column j + 1 can compute xj+1, begin
further updates, forward its own contributions to next
process, etc.
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1-D Column Wavefront Algorithm

To formalize wavefront column algorithm we introduce
z : vector in which to accumulate updates to
right-hand-side
segment : set containing at most s consecutive
components of z
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1-D Column Wavefront Algorithm
for j ∈ mycols

for k = 1 to # segments
recv segment
if k = 1 then

xj = (bj − zj)/`jj
segment = segment − {zj}

end
for zi ∈ segment

zi = zi + `ij xj
end
if |segment | > 0 then

send segment to processor owning column j + 1
end

end
end
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1-D Column Wavefront Algorithm

Depending on segment size, column mapping,
communication-to-computation speed ratio, etc.,
it may be possible for all processors to become busy
simultaneously, each working on different component of
solution

Segment size is adjustable parameter that controls tradeoff
between communication and concurrency

“First” segment for given column shrinks by one element
after each component of solution is computed,
disappearing after s steps, when next segment becomes
“first” segment, etc.
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1-D Column Wavefront Algorithm

At end of computation only one segment remains and it
contains only one element

Communication volume declines throughout algorithm

As segment length s increases, communication start-up
cost decreases but computation cost increases, and vice
versa as segment length decreases

Optimal choice of segment length s can be predicted from
performance model
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1-D Row Wavefront Algorithm

Wavefront approach can also be applied to 1-D row fan-in
algorithm

Computation of ith inner product cannot be shared
because only one processor has access to row i of matrix

Thus, work on multiple components must be overlapped to
attain any concurrency

Analogous approach is to break solution vector x into
segments that are pipelined through processors
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1-D Row Wavefront Algorithm

Initially, processor owning row 1 computes x1 and sends it
to processor owning row 2, which computes resulting
update and then x2

This processor continues (serially at this early stage) until s
components of solution have been computed

Henceforth, receiving processors forward any full-size
segments before they are used in updating

Forwarding of currently incomplete segment is delayed
until next component of solution is computed and
appended to it
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1-D Row Wavefront Algorithm
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1-D Row Wavefront Algorithm
for i ∈ myrows

for k = 1 to # segments− 1
recv segment
send segment to processor owning row i+ 1
for xj ∈ segment

bi = bi − `ij xj
end

end
recv segment /* last may be empty */
for xj ∈ segment

bi = bi − `ij xj
end
xi = bi/`ii
segment = segment ∪ {xi}
send segment to processor owning row i+ 1

end
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1-D Row Wavefront Algorithm

Instead of starting with full set of segments that shrink and
eventually disappear, segments appear and grow until
there is a full set of them

It may be possible for all processors to be busy
simultaneously, each working on different segment

Segment size is adjustable parameter that controls tradeoff
between communication and concurrency, and optimal
value of segment length s can be predicted from
performance model
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2-D Algorithm

2-D Agglomeration, Cyclic Mapping

ℓ11

 b1 x1

ℓ21
ℓ22 

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53ℓ54

ℓ63ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 33 / 40



Triangular Systems
1D Algorithms

Wavefront Algorithms
2D Algorithms and TRSM

2-D Algorithm

2-D Agglomeration, Block Mapping

ℓ11

 b1 x1

ℓ21
ℓ22 

b2 x2

ℓ31 ℓ32

ℓ41 ℓ42

ℓ33

 b3 x3

ℓ43
ℓ44

b4 x4

ℓ51 ℓ52

ℓ61 ℓ62

ℓ53 ℓ54

ℓ63 ℓ64

ℓ55

b5 x5

ℓ65
ℓ66

b6 x6

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 34 / 40



Triangular Systems
1D Algorithms

Wavefront Algorithms
2D Algorithms and TRSM

2-D Algorithm

2-D Algorithm

For 2-D block mapping with (n/
√
p )× (n/

√
p ) fine-grain

tasks per process, both vertical broadcasts and horizontal
sum reductions are required to communicate solution
components and accumulate inner products, respectively

However, almost half the processors perform no work

For 1-D block mapping with n× n/p fine-grain tasks per
process, vertical broadcasts are no longer necessary, but
horizontal broadcasts send much larger messages, and
work is still unbalanced
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2-D Algorithm

Cyclic assignment of rows and columns to processors
yields provides each processor with at least
(n/
√
p)(n/

√
p− 1)/2 entries

But obvious implementation, computing successive
components of solution vector x and performing
corresponding horizontal sum reductions and vertical
broadcasts, still has limited concurrency
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2-D Algorithm

Triangular Solve with Many Right-Hand Sides

The triangular solve is a BLAS-2 operation

Θ(1) flop-to-byte ratio (operations per memory access)
Q1 = n2 and D = n, so degree of concurrency is Θ(n)

Solving many systems at a time, i.e. determining
X ∈ Rn×k so that

AX = B

where degree of concurrency is Θ(nk) and flop-to-byte
ratio can be as high as Θ(k)

Triangular solve with multiple equations TRSM can also
achieve better parallel scaling efficiency
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2-D Algorithm

Triangular Inversion

A different way to solve a triangular linear system is to
Invert the triangular matrix S = L−1, then perform a
Matrix vector multiplication x = Sy

This method requires Q1 = Θ(n3) work to solve a single
linear system of equations, but has logarithmic depth

For k linear systems (TRSM), Q1 = Θ(n3 + n2k) may be ok
Lower depth evident from decoupling of recursive equations[

L11

L21 L22

] [
S11

S21 S22

]
=

[
I

I

]
where we deduce that S11 = L−1

11 and S22 = L−1
22 are

independent, while S21 = S22L21S11 can be done with
matrix multiplication which has D = Θ(log(n))
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