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Banded Linear Systems

Bandwidth (or semibandwidth) of n× n matrix A is
smallest value w such that

aij = 0 for all |i− j| > w

Matrix is banded if w � n

If w � p, then minor modifications of parallel algorithms for
dense LU or Cholesky factorization are reasonably efficient
for solving banded linear system Ax = b

If w / p, then standard parallel algorithms for LU or
Cholesky factorization utilize few processors and are very
inefficient
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Narrow Banded Linear Systems

More efficient parallel algorithms for narrow banded linear
systems are based on divide-and-conquer approach in
which band is partitioned into multiple pieces that are
processed simultaneously

Reordering matrix by nested dissection is one example of
this approach

Because of fill, such methods generally require more total
work than best serial algorithm for system with dense band

We will illustrate for tridiagonal linear systems, for which
w = 1, and will assume pivoting is not needed for stability
(e.g., matrix is diagonally dominant or symmetric positive
definite)
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Tridiagonal Linear System

Tridiagonal linear system has form
b1 c1
a2 b2 c2

. . . . . . . . .
an−1 bn−1 cn−1

an bn




x1
x2
...

xn−1

xn

 =


y1
y2
...

yn−1

yn



For tridiagonal system of order n, LU or Cholesky
factorization incurs no fill, but yields serial thread of length
Θ(n) through task graph, and hence no parallelism

Neither cdivs nor cmods can be done simultaneously
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Tridiagonal System, Natural Order
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Two-Way Elimination

Other orderings may enable some degree of parallelism,
however

For example, elimination from both ends (sometimes called
twisted factorization) yields two concurrent threads
(odd-numbered nodes and even-numbered nodes) through
task graph and still incurs no fill

Michael T. Heath and Edgar Solomonik Parallel Numerical Algorithms 7 / 28



Band Systems
Tridiagonal Systems

Cyclic Reduction

Tridiagonal System, Two-Way Elimination
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Odd-Even Ordering

Repeating this idea recursively gives odd-even ordering
(variant of nested dissection), which yields even more
parallelism, but incurs some fill
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Tridiagonal System, Odd-Even Ordering
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Cyclic Reduction

Recursive nested dissection for tridiagonal system can be
effectively implemented using cyclic reduction (or
odd-even reduction)

Linear combinations of adjacent equations in tridiagonal
system are used to eliminate alternate unknowns

Adding appropriate multiples of (i− 1)st and (i+ 1)st
equations to ith equation eliminates xi−1 and xi+1,
respectively, from ith equation

Resulting new ith equation involves xi−2, xi, and xi+2, but
not xi−1 or xi+1
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Cyclic Reduction

For tridiagonal system, ith equation

ai xi−1 + bi xi + ci xi+1 = yi

is transformed into

āi xi−2 + b̄i xi + c̄i xi+2 = ȳi

where

āi = αi ai−1, b̄i = bi + αi ci−1 + βi ai+1

c̄i = βi ci+1, ȳi = yi + αi yi−1 + βi yi+1

with αi = −ai/bi−1 and βi = −ci/bi+1
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Cyclic Reduction

After transforming each equation in system (handling first
two and last two equations as special cases), matrix of
resulting new system has form

b̄1 0 c̄1
0 b̄2 0 c̄2
ā3 0 b̄3 0 c̄3

. . . . . . . . . . . . . . .
ān−2 0 b̄n−2 0 c̄n−2

ān−1 0 b̄n−1 0
ān 0 b̄n


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Cyclic Reduction

Reordering equations and unknowns to place odd indices
before even indices, matrix then has form

b̄1 c̄1

ā3 b̄3
. . .

. . . . . . c̄n−3

ān−1 b̄n−1 0
0 b̄2 c̄2

ā4 b̄4
. . .

. . . . . . c̄n−2

ān b̄n


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Cyclic Reduction

System breaks into two independent tridiagonal systems
that can be solved simultaneously (i.e.,
divide-and-conquer)

Each resulting tridiagonal system can in turn be solved
using same technique (i.e., recursively)

Thus, there are two distinct sources of potential parallelism
simultaneous transformation of equations in system
simultaneous solution of multiple tridiagonal subsystems
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Cyclic Reduction

Cyclic reduction requires log2 n steps, each of which
requires Θ(n) operations, so total work is Θ(n log n)

Serially, cyclic reduction is therefore inferior to LU or
Cholesky factorization, which require only Θ(n) work for
tridiagonal system

But in parallel, cyclic reduction can exploit up to n-fold
parallelism and requires only Θ(log n) time in best case

Often matrix becomes approximately diagonal in fewer
than log n steps, in which case reduction can be truncated
and still attain acceptable accuracy
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Cyclic Reduction

Cost for solving tridiagonal system by best serial algorithm
is about

T1 ≈ 8 γ n

where γ is time for one addition or multiplication

Cost for solving tridiagonal system serially by cyclic
reduction is about

T1 ≈ 12 γ n log2 n

which means that efficiency is less than 67%, even with
p = 1
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Parallel Cyclic Reduction

Partition : task i stores and performs reductions on ith
equation of tridiagonal system, yielding n fine-grain tasks

Communicate : data from “adjacent” equations is required
to perform eliminations at each of log n stages

Agglomerate : n/p equations assigned to each of p
coarse-grain tasks, thereby limiting communication to only
log p stages

Map : Assigning contiguous rows to processors is better
than cyclic mapping in this context

“Local” tridiagonal system within each processor can be
solved by serial cyclic reduction or by LU or Cholesky
factorization
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Parallel Cyclic Reduction

Parallel execution time for cyclic reduction is about

Tp ≈ 12 γ (n log2 n)/p+ (α+ 4β) log p

Algorithm efficiency is Ep = Ω(1/ log n) relative to optimal
serial counterpart, but relative to T1 = Θ(n log n), it is
strongly and weakly log-scalable
Can decrease work to Wp = Θ(n log p) by doing
work-efficient serial algorithm locally
Can lower communication cost to Θ(α logk p+ βk logk p) by
exchanging ghost-zones of size k and doing log2 k cyclic
reduction steps per exchange
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Parallel Tridiagonal Linear Solve

We can achieve asymptotic work-efficiency and
log-scalability via the following scheme, let

A =


0

x1

. . .

. . .
. . .

xn−1 0


︸ ︷︷ ︸

D−1(x)

+


y1

. . .
. . .

yn


︸ ︷︷ ︸

D0(y)

+


0 z1

. . .
. . .
. . . zn−1

0


︸ ︷︷ ︸

D+1(z)

Then define cyclic permutation matrix P so that

PAP T =

[
D0(yodds) D0(zodds) +D−1(xevens)

D0(xodds) +D+1(zevens) D0(yevens)

]
for which LU factorization reduces to a tridiagonal matrix of
dimension n/2 using O(n) fully concurrent work
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Block Tridiagonal Systems

Relatively fine granularity may make cyclic reduction
impractical for solving single tridiagonal system on some
parallel architectures

Efficiency may be much better, however, if there are many
right-hand sides for single tridiagonal system or many
independent tridiagonal systems to solve

Cyclic reduction is also applicable to block tridiagonal
systems, which have larger granularity and hence more
favorable ratio of communication to computation and
potentially better efficiency
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Iterative Methods

Tridiagonal and other banded systems are often amenable
to efficient parallel solution by iterative methods

For example, successive diagonal blocks of tridiagonal
system can be assigned to separate tasks, which can
solve “local” tridiagonal system as preconditioner for
iterative method for overall system
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