ABCDE
1
Day 1 (10/18)SpeakerAffiliationTalk Title
2
9:00 AM Session 1chair: David Gleich
3
Jingmei QiuUniversity of DelawareLow rank Tensor Approximations to Kinetic Models
4
William DetmoldMITTensor Computations in Lattice QCD
5
Joyce HoEmory UniversityFederated tensor learning and its application for healthcare
6
Ed ValeevVirginia TechAutomating symbolic manipulation and evaluation of data-sparse tensor algebra for quantum electronic structure
7
10:30 AM break
8
11:00 AM Session 2chair: Aditya Devarakonda
9
Changwan HongMITCompiler Support for Structured Data
10
Jee ChoiUniversity of OregonLinearized Tensor Format for Performance-Portable Sparse Tensor Computation
11
Toluwanimi OdemuyiwaUniversity of California, DavisExtending Einsums to Support Graph Analytics: A BFS Example
12
12:00 PM lunch
13
1:30 PM Session 3chair: Andrew Christleib
14
Cory HauckOak Ridge National LaboratoryA semi-implicit, low-rank DG method for a kinetic model of radiation emission and absorption
15
Elizabeth NewmanEmory UniversityOptimal Matrix-Mimetic Tensor Algebras via Variable Projection
16
Kejun HuangUniversity of FloridaHOQRI: Higher-order QR Iteration for Scalable Tucker Decomposition
17
Huan HeUniversity of PennsylvaniaEfficient Fine-tuning of pretrained machine learning models using Tensor Training
18
3:00 PM break
19
3:15 PM Session 4chair: Ramki Kannan
20
Nandeeka NayakUniversity of Illinois Urbana-ChampaignTeAAL: A Declarative Framework for Modeling Sparse Tensor Accelerators
21
Saday SadayappanUniversity of UtahCan tensor factorization help us shrink language models?
22
Scott KovachStanfordIndexed Streams: A Formal Intermediate Representation for Fused Contraction Programs
23
Arvind SaibabaNorth Carolina State UniversityTensor methods for parametric low-rank kernel approximations
24
4:40 PM poster session
25
5:45 PM end day 1
26
27
Day 2 (10/19)
28
8:30 AM Session 5chair: Sara Pollock
29
Osman MalikLawrence Berkeley National LaboratoryRecent advances in sampling-based methods for tensor decomposition
30
Carmeliza NavascaUniversity of Alabama at BirminghamSampling Methods for the Canonical Polyadic Decomposition
31
Linjian MaUniversity of Illinois at Urbana ChampaignEfficient tensor network contraction algorithms
32
Vivek BharadwajUC BerkeleyFaster Implicit Leverage Sampling Algorithms for CP and Tensor-Train Decomposition
33
10:00 AM break
34
10:30 AM Session 6char: Vishwas Rao
35
Alex GittensRensselaer Polytechnic InstituteFaster Structured Tensor Decompositions via Sketching
36
Teresa RanadiveLaboratory for Physical SciencesDistributed Large-Scale All-at-Once Count Tensor Decomposition
37
Eric PhippsSandia National LaboratoriesStreaming Generalized Canonical Polyadic Tensor Decompositions
38
Akwum OnwuntaLehigh UniversityTensor Train Approach to PDE-Constrained Optimization under Uncertainty
39
12:00 PM lunch
40
1:30 PM Session 7chair: Piotr Luszczek
41
Matt FishmanFlatiron InstituteConvenient development of general tensor network algorithms with ITensor
42
Avery LairdUniversity of TorontoAutomatically Translating Sparse Codes
43
Paul KielstraUC BerkeleyTensor Butterfly Factorization (In Parallel!)
44
Mit KotakMassachusetts Institute of TechnologyOptimizing Equivariant Tensor Products — the Computational Bottleneck of Symmetry-Equivariant Neural Networks
45
3:00 PM end